

Authors: Tollef Fog Heen (Varnish Software), Kristian Lyngstøl (Varnish Software), Jérôme
Renard (39Web)

Copyright: Varnish Software AS 2010-2013, Redpill Linpro AS 2008-2009

Versions: Documentation version-4.7-58-g56edce8-dirty / Tested for Varnish 3.0.4

Date: 2013-07-08

License: The material is available under a CC-BY-NC-SA license. See
http://creativecommons.org/licenses/by-nc-sa/3.0/ for the full license. For questions
regarding what we mean by non-commercial, please contact
training@varnish-software.com.

Contact: For any questions regarding this training material, please contact
training@varnish-software.com.

Web: http://www.varnish-software.com/book/

Source: http://github.com/varnish/Varnish-Book/

http://www.varnish-software.com/
http://www.varnish-software.com/
http://39web.fr/
http://creativecommons.org/licenses/by-nc-sa/3.0/
mailto:training@varnish-software.com
mailto:training@varnish-software.com
http://www.varnish-software.com/book/
http://github.com/varnish/Varnish-Book/

Contents
1 Introduction 9

1.1 About the course 10

1.2 Goals and Prerequisites 11

1.3 Introduction to Varnish 12

1.4 Design principles 13

1.5 How objects are stored 14

2 Getting started 15

2.1 Configuration 16

2.2 Command line configuration 17

2.3 Configuration files 18

2.4 Defining a backend in VCL 19

2.5 Exercise: Installation 20

2.6 Exercise: Fetch data through Varnish 21

2.7 Log data 22

2.8 varnishlog 23

2.9 Varnishlog tag examples 24

2.10 varnishlog options 25

2.11 varnishstat 26

2.12 The management interface 28

2.13 Exercise: Try out the tools 29

3 Tuning 30

3.1 Process Architecture 31

3.1.1 The management process 31

3.1.2 The child process 32

3.1.3 VCL compilation 32

3.2 Storage backends 33

3.3 The shared memory log 34

3.4 Tunable parameters 35

3.5 Threading model 36

3.6 Threading parameters 37

3.6.1 Details of threading parameters 37

3.6.2 Number of threads 38

3.6.3 Timing thread growth 38

3.7 System parameters 39

3.8 Timers 40

3.9 Exercise: Tune first_byte_timeout 41

3.10 Exercise: Configure threading 42

4 HTTP 43

4.1 Protocol basics 44

4.2 Requests 45

4.3 Request example 46

4.4 Response 47

4.5 Response example 48

4.6 HTTP request/response control flow 49

4.7 Statelesness and idempotence 50

4.8 Cache related headers 51

4.9 Exercise : Test various Cache headers 52

4.10 Expires 53

4.11 Cache-Control 54

4.12 Last-Modified 56

4.13 If-Modified-Since 57

4.14 If-None-Match 58

4.15 Etag 59

4.16 Pragma 60

4.17 Vary 61

4.18 Age 62

4.19 Header availability summary 63

4.20 Cache-hit and misses 64

4.21 Exercise: Use article.php to test Age 65

5 VCL Basics 66

5.1 The VCL State Engine 67

5.2 Syntax 68

5.3 VCL - request flow 69

5.3.1 Detailed request flow 70

5.4 VCL - functions 71

5.5 VCL - vcl_recv 72

5.6 Default: vcl_recv 73

5.7 Example: Basic Device Detection 74

5.8 Exercise: Rewrite URLs and Host headers 75

5.9 Solution: Rewrite URLs and Host headers 76

5.10 VCL - vcl_fetch 77

5.11 Default: vcl_fetch 78

5.12 The initial value of beresp.ttl 79

5.13 Example: Enforce caching of .jpg urls for 60 seconds 80

5.14 Example: Cache .jpg for 60 only if s-maxage isn't present 81

5.15 Exercise: Avoid caching a page 82

5.16 Solution: Avoid caching a page 83

5.17 Exercise: Either use s-maxage or set ttl by file type 84

5.18 Solution: Either use s-maxage or set ttl by file type 85

5.19 Summary of VCL - Part 1 86

6 VCL functions 87

6.1 Variable availability in VCL 88

6.2 VCL - vcl_hash 89

6.3 VCL - vcl_hit 90

6.4 VCL - vcl_miss 91

6.5 VCl - vcl_pass 92

6.6 VCL - vcl_deliver 93

6.7 VCL - vcl_error 94

6.8 Example: Redirecting users with vcl_error 95

6.9 Exercise: Modify the error message and headers 96

6.10 Solution: Modify the error message and headers 97

7 Cache invalidation 98

7.1 Naming confusion 99

7.2 Removing a single object 100

7.3 Example: purge; 101

7.4 The lookup that always misses 102

7.5 Banning 103

7.6 VCL contexts when adding bans 104

7.7 Smart bans 105

7.8 ban() or purge;? 106

7.9 Exercise: Write a VCL for bans and purges 107

7.10 Solution: Write a VCL for bans and purges 108

7.11 Exercise : PURGE an article from the backend 109

7.12 Solution : PURGE an article from the backend 110

8 Saving a request 113

8.1 Core grace mechanisms 114

8.2 req.grace and beresp.grace 115

8.3 When can grace happen 116

8.4 Exercise: Grace 117

8.5 Health checks 118

8.6 Health checks and grace 120

8.7 Directors 121

8.7.1 Client and hash directors 122

8.7.2 The DNS director 122

8.8 Demo: Health probes and grace 123

8.9 Saint mode 124

8.10 Restart in VCL 125

8.11 Backend properties 126

8.12 Example: Evil backend hack 127

8.13 Access Control Lists 128

8.14 Exercise: Combine PURGE and restart 129

8.15 Solution: Combine PURGE and restart 131

9 Content Composition 133

9.1 A typical site 134

9.2 Cookies 135

9.3 Vary and Cookies 136

9.4 Best practices for cookies 137

9.5 Exercise: Compare Vary and hash_data 138

9.6 Edge Side Includes 139

9.7 Basic ESI usage 140

9.8 Exercise: Enable ESI and Cookies 141

9.9 Testing ESI without Varnish 142

9.10 Masquerading AJAX requests 143

9.11 Exercise : write a VCL that masquerades XHR calls 144

9.12 Solution : write a VCL that masquerades XHR calls 145

10 Finishing words 147

10.1 Varnish 2.1 to 3.0 148

10.2 Resources 149

11 Appendix A: Varnish Programs 150

11.1 varnishtop 151

11.2 varnishncsa 152

11.3 varnishhist 153

11.4 Exercise: Try the tools 154

12 Appendix B: Extra Material 155

12.1 ajax.html 156

12.2 article.php 157

12.3 cookies.php 158

12.4 esi-top.php 159

12.5 esi-user.php 160

12.6 httpheadersexample.php 162

12.7 purgearticle.php 164

12.8 test.php 165

12.9 set-cookie.php 166

1 Introduction

• About the course

• Goals and prerequisites

• Introduction to Varnish

• History

• Design Principles

Section 1 Introduction Page 9

1.1 About the course
The course is split in two:

1. Architecture, command line tools, installation, parameters, etc

2. The Varnish Configuration Language

The course has roughly 50% exercises and 50% instruction, and you will find all the information on the
slides in the supplied training material.

The supplied training material also has additional information for most chapters.

The Varnish Book includes the material for both the Varnish System Administration course and the
Varnish for Web developers course.

The agenda is adjusted based on the progress made. There is usually ample time to investigate specific
aspects of Varnish that may be of special interest to some of the participants.

The exercises will occasionally offer multiple means to reach the same goals. Specially when you start
working on VCL, you will notice that there are almost always more than one way to solve a specific
problem, and it isn't necessarily given that the solution offered by the instructor or this course material is
better than what you might come up with yourself.

Always feel free to interrupt the instructor if something is unclear.

Page 10 Section 1.1 About the course

1.2 Goals and Prerequisites
Prerequisites:

• Comfortable working in a shell on a Linux/UNIX machine, including editing text files and starting
daemons.

• Basic understanding of HTTP and related internet protocols

Goals:

• Thorough understanding of Varnish

• Understanding of how VCL works and how to use it

The course is oriented around a GNU/Linux server-platform, but the majority of the tasks only require
minimal knowledge of GNU/Linux.

The course starts out by installing Varnish and navigating some of the common configuration files, which
is perhaps the most UNIX-centric part of the course. Do not hesitate to ask for help.

The goal of the course is to make you confident when using Varnish and let you adjust Varnish to your
exact needs. If you have any specific area you are particularly interested in, the course is usually flexible
enough to make room for it.

Section 1.2 Goals and Prerequisites Page 11

1.3 Introduction to Varnish

• What is Varnish?

• Open Source / Free Software

• History

• Varnish Governance Board (VGB)

Varnish is a reverse HTTP proxy, sometimes referred to as a HTTP accelerator or a web accelerator. It
stores files or fragments of files in memory, allowing them to be served quickly. It is essentially a key/value
store, that usually uses the URL as a key. It is designed for modern hardware, modern operating systems
and modern work loads.

At the same time, Varnish is flexible. The Varnish Configuration Language is lightning fast and allows the
administrator to express their wanted policy rather than being constrained by what the Varnish developers
want to cater for or could think of. Varnish has shown itself to work well both on large (and expensive)
servers and tiny appliances.

Varnish is also an open source project, and free software. The development process is public and
everyone can submit patches, or just take a peek at the code if there is some uncertainty as to how
Varnish works. There is a community of volunteers who help each other and newcomers. The BSD-like
license used by Varnish does not place significant restriction on re-use of the code, which makes it
possible to integrate Varnish in virtually any solution.

Varnish is developed and tested on GNU/Linux and FreeBSD. The code-base is kept as self-contained as
possible to avoid introducing out-side bugs and unneeded complexity. As a consequence of this, Varnish
uses very few external libraries.

Varnish development is governed by the Varnish Governance Board (VGB), which thus far has not
needed to intervene. The VGB consists of an architect, a community representative and a representative
from Varnish Software. As of March 2012, the positions are filled by Poul-Henning Kamp (Architect),
Rogier Mulhuijzen (Community) and Kristian Lyngstøl (Varnish Software). On a day-to-day basis, there is
little need to interfere with the general flow of development.

For those interested in development, the developers arrange weekly bug washes were recent tickets and
development is discussed. This usually takes place on Mondays around 12:00 CET on the IRC channel
#varnish-hacking on irc.linpro.net.

Page 12 Section 1.3 Introduction to Varnish

1.4 Design principles

• Solve real problems

• Optimize for modern hardware (64-bit, multi-core, etc)

• Work with the kernel, not against it

• Innovation, not regurgitation

The focus of Varnish has always been performance and flexibility. That has required some sacrifices.

Varnish is designed for hardware that you buy today, not the hardware you bought 15 years ago. Varnish
is designed to run on 64-bit architectures and will scale almost proportional to the number of CPU cores
you have available. Though CPU-power is rarely a problem.

If you choose to run Varnish on a 32-bit system, you are limited to 3GB of virtual memory address space,
which puts a limit on the number of threads you can run and the size of your cache. This is a trade-off to
gain a simpler design and reduce the amount of work Varnish needs to do. The 3GB limit depends on the
operating system kernel. The theoretical maximum is 4GB, but your OS will reserve some of that for the
kernel. This is called the user/kernel split.

Varnish does not keep track of whether your cache is on disk or in memory. Instead, Varnish will request a
large chunk of memory and leave it to the operating system to figure out where that memory really is. The
operating system can generally do a better job than a user-space program.

Accept filters, epoll and kqueue are advanced features of the operating system that are designed for
high-performance services like Varnish. By using these, Varnish can move a lot of the complexity into the
OS kernel which is also better positioned to know what threads are ready to execute when.

In addition, Varnish uses a configuration language that is translated to C-code, compiled with a normal C
compiler and then dynamically linked directly into Varnish at run-time. This has several advantages. The
most practical of which is the freedom you get as a system administrator. You can use VCL to decide how
you want to interface with Varnish, instead of having a developer try to predict every possible scenario.
The fact that it boils down to C and a C compiler also gives you very high performance, and if you really
wanted to, you could by-pass the VCL to C translation and write raw C code (this is called in-line C in
VCL). In short: Varnish provides the features, VCL allow you to specify exactly how you use and combine
them.

With Varnish 3 you also have Varnish Modules or simply vmods. These modules let you extend the
functionality of the VCL language by pulling in custom-written features. Some examples include
non-standard header manipulation, access to memcached or complex normalization of headers.

The shared memory log allows Varnish to log large amounts of information at almost no cost by having
other applications parse the data and extract the useful bits. This reduces the lock-contention in the
heavily threaded environment of Varnish. Lock-contention is also one of the reasons why Varnish uses a
workspace-oriented memory-model instead of allocating the exact amount of space it needs at run-time.

To summarize: Varnish is designed to run on modern hardware under real work-loads and to solve real
problems. Varnish does not cater to the "I want to make Varnish run on my 486 just because"-crowd. If it
does work on your 486, then that's fine, but that's not where you will see our focus. Nor will you see us
sacrifice performance or simplicity for the sake of niche use-cases that can easily be solved by other
means - like using a 64-bit OS.

Section 1.4 Design principles Page 13

1.5 How objects are stored

• Objects in Varnish are stored in a hash

• You can control the hashing

• Multiple objects can have the same hash key

Varnish has, as mentioned, a key/value store in its core. Objects are stored in memory and a reference to
this object is kept in a hash tree.

A rather unique feature of Varnish is that you can actually control what goes into the hashing algorithm
that Varnish uses to store data. Typically the key is made out of the HTTP Host header and the URL, but
you're actually able to override this if you should choose to do so.

The HTTP protocol specifies that there can be multiple objects that can be served on the same URL,
depending on the preferences of the client. For instance, serving gzip'ed content to a client that doesn't
indicate gzip support doesn't make much sense and Varnish might look at the Various objects stored at
that key to pick out the one that matches.

Page 14 Section 1.5 How objects are stored

2 Getting started
In this chapter, we will:

• Install and test a backend

• Install Varnish

• Make Varnish and the backend-server work together

• Cover basic configuration

You want to use packages for your operating system whenever possible.

If the computer you will be using throughout this course has Varnish 3.0.0 or more recent available
through the package system, you are encouraged to use that package if you do not feel you need the
exercise in installing from source.

We will be using Apache as a web server.

This course is about Varnish, but we need an operating system to test. For the sake of keeping things
simple, the course uses Debian as a platform. You will find several references to differences between
Debian and Red Hat where they matter the most, but for the most part, this course is independent on the
operating system in use.

Section 2 Getting started Page 15

2.1 Configuration
Varnish has two categories of configuration:

• Command line configuration and tunable parameters

• VCL

To re-load Varnish configuration, you have several commands:

Command Result

service varnish restart Completely restarts Varnish, using the operating system
mechanisms. Your cache will be flushed.

service varnish reload Only reloads VCL. Cache is not affected.

varnishadm vcl.load .. and
varnishadm vcl.use ..

Can be used to manually reload VCL. The service
varnish reload command does this for you
automatically.

varnishadm param.set ... Can be used to set parameters without restarting
Varnish.

Using the service commands is recommended. It's safe and fast.

Tunable parameters and command line arguments are used to define how Varnish should work with
operating system and hardware in addition to setting some default values, while VCL define how Varnish
should interact with web servers and clients.

Almost every aspect of Varnish can be reconfigured without restarting Varnish. Notable exceptions are
cache size and location, the username and group that Varnish runs as and hashing algorithm.

While you can change the values, some changes might require restarting the child to take effect
(modifying the listening port, for instance) or might not be visible immediately. Changes to how long
objects are cached, for instance, usually only take effect after the currently cached objects expire and are
fetched again. Issuing param.show <parameter> will give you a description of the parameter, when
and how it takes effect and the default and current value.

Page 16 Section 2.1 Configuration

2.2 Command line configuration
-a <[hostname]:port> listen address

-f <filename> VCL

-p <parameter=value> set tunable parameters

-S <secretfile> authentication secret for management

-T <hostname:port> Management interface

-s <storagetype,options> where and how to store objects

All the options that you can pass to the varnishd binary are documented in the varnishd(1) manual
page (man varnishd). You may want to take a moment to skim over the options mentioned above.

The only option that is strictly needed to start Varnish is the -f to specify a VCL file.

Though they are not strictly required, you almost always want to specify a -s to select a storage
backend, -a to make sure Varnish listens for clients on the port you expect and -T to enable a
management interface, often referred to as a telnet interface.

Both for -T and -a, you do not need to specify an IP, but can use :80 to tell Varnish to listen to port 80
on all IPs available. Make sure you don't forget the colon, as -a 80 will tell Varnish to listen to the IP with
the decimal-representation "80", which is almost certainly not what you want. This is a result of the
underlying function that accept this kind of syntax.

You can specify -p for parameters multiple times. The workflow for tuning Varnish parameters usually
means that you first try the parameter on a running Varnish through the management interface to find the
value you want, then store it in a configuration file that will pass it to Varnish with -p next time you start it
up. We will look at these files later on.

The -S option specifies a file which contains a secret to be used for authentication. This can be used to
authenticate with varnishadm -S as long as varnishadm can read the same secret file - or rather the
same content: The content of the file can be copied to another machine to allow varnishadm to access the
management interface remotely.

Note

It is possible to start Varnish without a VCL file using the -b option instead of -f:
-b <hostname:port> backend address

Since the -b option is mutually exclusive with the -f option, we will only use the -f option. You
can use -b if you do not intend to specify any VCL and only have a single web server.

Section 2.2 Command line configuration Page 17

2.3 Configuration files
Most Varnish-installations use two configuration-files. One of them is used by the operating system to start
Varnish, while the other contains your VCL.

File Usage

/etc/default/varnish Used for parameters and command line arguments. When
you change this, you need to run service varnish
restart for the changes to take effect. On
RedHat-based OS's, this is kept in
/etc/sysconfig/varnish instead.

/etc/varnish/default.vcl The VCL file. You can change the file name by editing
/etc/default/varnish if you want to, but it's normal to use
the default name. This contains your VCL and
backend-definitions. After changing this, you can run
either service varnish reload, which will not restart
Varnish, or you can run service varnish restart,
which empties the cache.

There are other ways to reload VCL and make parameter-changes take effect, mostly using the
varnishadm tool. However, using the service varnish reload and service varnish
restart commands is a good habit.

Note

If you want to know how the service varnish-commands work, you can always look at the
script that runs behind the scenes. If you are used to UNIX-like systems, it will come as no surprise
that the script can be found in /etc/init.d/varnish.

Warning

The script-configuration (located in /etc/sysconfig or /etc/default) is directly sourced as a shell
script. Pay close attention to any backslashes (\) and quotation marks that might move around as
you edit the DAEMON_OPTS environmental variable.

Page 18 Section 2.3 Configuration files

2.4 Defining a backend in VCL
/etc/varnish/default.vcl

backend default {
 .host = "localhost";
 .port = "8080";
}

In Varnish terminology, a backend-server is whatever server Varnish talks to to fetch content. This can be
any sort of service as long as it understands HTTP. Most of the time, Varnish talks to a web server or an
application frontend server.

You almost always want to use VCL so we might as well get started.

The above example defines a backend named default. The name default is not special, and the real
default backend that Varnish will use is the first backend you specify.

You can specify many backends at the same time, but for now, we will only specify one to get started.

Section 2.4 Defining a backend in VCL Page 19

2.5 Exercise: Installation
You can install packages on Debian with apt-get install <package>. E.g: apt-get install
apache2. For Red Hat, the tool would be yum install <package>.

1. Install apache2 and verify it works by browsing to http://localhost/. You probably want to change
localhost with whatever the hostname of the machine you're working is.

2. Change Apache's ports from 80 to 8080, in /etc/apache2/ports.conf and
/etc/apache2/sites-enabled/000-default.

3. Install Varnish

4. Modify the Varnish configuration file so Varnish listens on port 80, has a management interface on
port 1234 and uses 127.0.0.1:8080 as the backend.

5. Start Varnish using service varnish start.

The end result should be:

Service Result Related config-files

Apache Answers on port 8080 /etc/apache2/ports.conf and
/etc/apache2/sites-enabled/000-default

Varnish Answers on port 80 /etc/default/varnish

Varnish Talks to apache on
localhost:8080

/etc/varnish/default.vcl

Varnish Software and the Varnish community maintains a package repository for several common
GNU/Linux distributions. If your system does not have sufficiently up-to-date packages, visit
https://www.varnish-cache.org/releases and find a package for your distribution.

Once you have modified the /etc/default/varnish-file, it should look something like this (comments
removed):

NFILES=131072
MEMLOCK=82000
INSTANCE=$(uname -n)
DAEMON_OPTS="-a :80 \
 -T localhost:1234 \
 -f /etc/varnish/default.vcl \
 -s malloc,256m"

Tip

You can get an overview over services listening on TCP ports by issuing the command netstat
-nlpt.

Page 20 Section 2.5 Exercise: Installation

https://www.varnish-cache.org/releases

2.6 Exercise: Fetch data through Varnish

1. Install libwww-perl

2. Execute GET -Used http://localhost:80/ (on the command line)

3. Compare the results from multiple executions.

GET and HEAD is actually the same tool; lwp-request. A HTTP HEAD request tells the web server - or
Varnish in this case - to only reply with the HTTP headers, while GET returns everything.

GET -Used tells lwp-request to do a GET-request, print the request headers (U), print the response
status code (s), which is typically "200 OK" or "404 File not found", print the response headers "-e" and
finally to not display the content of the response. Feel free to try removing some of the options observe
the effect.

GET is also useful to generate requests with custom headers, as you can supply extra headers with -H
"Header: value", which can be used multiple times.

You may also be familiar with firebug, an add-on for Firefox used for web development and related affairs.
This too can show you the response headers.

Web browsers have their own cache which you may not immediately be able to tell if you're using or not.
It's often helpful to double-check with GET or HEAD if you are in doubt if what you're seeing is coming
from Varnish or is part of your browser cache.

Section 2.6 Exercise: Fetch data through Varnish Page 21

2.7 Log data
Varnish provides a great deal of log data in real-time. The two most important tools to process that log
data is:

• Varnishlog, used to access request-specific data (An extended access log, provides information
about specific clients and requests.).

• varnishstat, used to access global counters (Provides overall statistics, e.g the number of total
requests, number of objects and more.).

• If you have multiple Varnish instances on the same machine, you need to specify -n <name> both
when starting Varnish and when starting the corresponding tools.

In addition the varnishncsa-tool is often used to write apache-like log files.

If you look for logging data for Varnish you may discover that /var/log/varnish/ is either non-existent or
empty. There's a reason for that.

Varnish logs all its information to a shared memory log which is overwritten repeatedly every time it's filled
up. To use the log data, you need to use specific tools to parse the content.

The downside is that you don't have historic data unless you set it up yourself, which is not covered in this
chapter, but the upside is that you get an abundance of information when you need it.

Through the course you will become familiar with varnishlog and varnishstat, which are the two most
important tools you have at your disposal.

Note

If you want to log to disk you should take a look at /etc/default/varnishlog or
/etc/default/varnishncsa (or the syconfig equivalents). This will allow you to run
varnishncsa or varnishlog as a service in the background that writes to disk.

Keep in mind that varnishlog generates large amounts of data, though. You may not want to
log all of it to disk.

Note

All log tools (and varnishadm) takes an -n option. Varnish itself also takes a -n option. This is
used to specify a name for varnishd, or the location of the shared memory log. On most
installations -n is not used, but if you run multiple Varnish instances on a single machine you
need to use -n to distinguish one varnish-instance from another.

Page 22 Section 2.7 Log data

2.8 varnishlog

97 ReqStart c 10.1.0.10 50866 117511506
97 RxRequest c GET
97 RxURL c /style.css
97 RxProtocol c HTTP/1.1
97 RxHeader c Host: www.example.com
97 VCL_call c recv lookup
97 VCL_call c hash hash
97 Hit c 117505004
97 VCL_call c hit deliver
97 Length c 3218
97 VCL_call c deliver deliver
97 TxProtocol c HTTP/1.1
97 TxStatus c 200
97 TxResponse c OK
97 TxHeader c Content-Length: 3218
97 TxHeader c Date: Sat, 22 Aug 2008 01:10:10 GMT
97 TxHeader c X-Varnish: 117511501 117505004
97 TxHeader c Age: 2
97 TxHeader c Via: 1.1 varnish
97 ReqEnd c 117511501 1227316210.534358978 \
 1227316210.535176039 0.035283089 0.000793934 0.000023127

The above output is a single cache hit, as processed by Varnish. When you are dealing with several
thousand requests per second you need filtering.

The displayed data is categorized as follows:

1. The number on the left is a semi-unique identifier of the request. It is used to distinguish different
requests.

2. Each piece of log information belongs to a tag, as seen on the second left-most column. TxHeader,
RxHeader, VCL_call etc. You can use those tags for intelligent filtering.

3. Varnishlog will try to decipher if a request is related to a client (c), backend (b) or "misc" (-). This can
be used to filter the log. The misc-category will contain data related to thread-collection, object expiry
and similar internal data.

4. The tag-specific content. E.g: the actual URL, the name and content of a HTTP header and so on.

Since varnishlog displays all data in the log unless you filter it, there is a lot of data that you can safely
ignore, and some data you should focus on. The following table demonstrates some tags and values that
are useful. Since the tags them self are somewhat generic, you do not have a "Response header sent to a
client"-header, but a "Sent Header" (TxHeader) tag, and it's up to you to interpret if that means it was sent
to a client or a web server.

Section 2.8 varnishlog Page 23

2.9 Varnishlog tag examples

Tag Example value Description

RxURL /index.html Varnish received a URL, the only
scenario where Varnish receives a URL
is from a client, thus: a client sent us
this URL.

TxURL /index.html Varnish sent a URL, the only scenario
where Varnish sends a URL is to a
backend, thus: this is part of a backend
request.

RxHeader Host: www.example.com A received header. Either a request
header or a response header backend.
Since we know the Host-header is a
request header, we can assume it's
from a client.

TxHeader Host: example.com A header Varnish sent. Either a request
header or a response header. Since we
know the Host-header is a request
header we can assume it is a header
Varnish sent to a backend.

RxRequest GET Received request method. Varnish only
receives requests from clients.

TxStatus 200 Status code Varnish sent. Only sent to
clients.

RxStatus 500 Status code Varnish received from a
backend.

ReqEnd 1048725851 1352290440.688310385
1352290440.688468695
0.000107288 0.000083208
0.000075102

The "End of request" entry has various
timing details for debugging. The first
number is the XID, the second is the
time the request started and the
second is when it finished. The fourth
number is time from accepting the
connection to processing of the request
started. The fifth number is time from
request processing started to delivery
(e.g: VCL execution and backend
fetching). The sixth and last number is
how long the delivery itself took.

Page 24 Section 2.9 Varnishlog tag examples

2.10 varnishlog options
-b Only show traffic to backend.

-c Only show traffic to client.

-O Do not group by request.

-m <tag:filter> Show requests where the <tag> matches <filter>.
Example: varnishlog -m TxStatus:500 to
show requests returned to a client with status
code 500.

-n <name> The name of the Varnish instance, or path to the
shmlog. Useful for running multiple instances of
Varnish.

-i <tag[,tag][..]> Only show the specified tags.

-I <regex> Filter the tag provided by -i, using the regular
expression for -I.

Some examples of useful command-combinations:

Command Description

varnishlog -c -m
RxURL:/specific/url/

Only show client-requests for the url /specific/url..

varnishlog -O -i ReqEnd Only show the ReqEnd tag. Useful to spot sporadic slowdown.
Watch the last three values of it.

varnishlog -O -i TxURL Only show the URLs sent to backend servers. E.g: Cache
misses and content not cached.

varnishlog -O -i RxHeader -I
Accept-Encoding

Show the Accept-Encoding request header.

varnishlog -b -m
TxRequest:POST

Show backend requests using the POST method.

varnishlog -O -i
TxURL,TxHeader

Only shows the URL sent to a backend server and all headers
sent, either to a client or backend.

Warning

varnishlog sometimes accept arguments that are technically incorrect, which can have
surprising results on filtering. Make sure you double-check the filter logic. You most likely want to
specify -b or -c too.

Section 2.10 varnishlog options Page 25

2.11 varnishstat

0+00:44:50 foobar
Hitrate ratio: 10 100 175
Hitrate avg: 0.9507 0.9530 0.9532

 574660 241.00 213.63 Client connections accepted
 2525317 937.00 938.78 Client requests received
 2478794 931.00 921.48 Cache hits
 7723 3.00 2.87 Cache hits for pass
 140055 36.00 52.07 Cache misses
 47974 12.00 17.83 Backend conn. success
 109526 31.00 40.72 Backend conn. reuses
 46676 5.00 17.35 Backend conn. was closed
 156211 41.00 58.07 Backend conn. recycles
 110500 34.00 41.08 Fetch with Length
 46519 6.00 17.29 Fetch chunked
 456 0.00 0.17 Fetch wanted close
 5091 . . N struct sess_mem
 3473 . . N struct sess
 53570 . . N struct object
 50070 . . N struct objecthead
 20 . . N struct vbe_conn

varnishstat gives a good representation of the general health of Varnish, including cache hit rate, uptime,
number of failed backend connections and many other statistics.

There are over a hundred different counters available. To increase the usefulness of varnishstat, only
counters with a value different from 0 is shown by default.

varnishstat can be executed either as a one-shot tool which simply prints the current values of all the
counters, using the -1 option, or interactively. Both methods allow you to specify specific counters using
-f field1,field2,... to limit the list.

In interactive mode, varnishstat starts out by printing the uptime(45 minutes, in the example above) and
hostname(foobar).

The Hitrate ratio and Hitrate avg are related. The Hitrate average measures the cache hit rate for a period
of time stated by hitrate ratio. In the example above, the hitrate average for the last 10 seconds is 0.9507
(or 95.07%), 0.9530 for the last 100 seconds and 0.9532 for the last 175 seconds. When you start
varnishstat, all of these will start at 1 second, then grow to 10, 100 and 1000. This is because varnishstat
has to compute the average while it is running; there is no historic data of counters available.

The bulk of varnishstat is the counters. The left column is the raw value, the second column is change per
second in real time and the third column is change per second on average since Varnish started. In the
above example Varnish has served 574660 requests and is currently serving roughly 241 requests per
second.

Some counters do not have 'per second' data. These are counters which both increase and decrease.

Page 26 Section 2.11 varnishstat

There are far too many counters to keep track of for non-developers, and many of the counters are only
there for debugging purposes. This allows you to provide the developers of Varnish with real and detailed
data whenever you run into a performance issue or bug. It allows the developers to test ideas and get
feedback on how it works in production environments without creating special test versions of Varnish. In
short: It allows Varnish to be developed according to how it is used.

In addition to some obviously interesting counters, like cache_hit and client_conn, some counters of note
are:

Counter Description

client_drop This counts clients Varnish had to drop due to resource shortage. It should
be 0.

cache_hitpass Hitpass is a special type of cache miss. It will be covered in the VCL
chapters, but it can often be used to indicate if something the backend sent
has triggered cache misses.

backend_fail Counts the number of requests to backends that fail. Should have a low
number, ideally 0, but it's not unnatural to have backend failures once in a
while. Just make sure it doesn't become the normal state of operation.

n_object Counts the number of objects in cache. You can have multiple variants of
the same object depending on your setup.

n_wrk, n_wrk_queued,
n_wrk_drop

Thread counters. During normal operation, the n_wrk_queued counter
should not grow. Once Varnish is out of threads, it will queue up requests
and n_wrk_queued counts how many times this has happened. Once the
queue is full, Varnish starts dropping requests without answering.
n_wrk_drop counts how many times a request has been dropped. It should
be 0.

n_lru_nuked Counts the number of objects Varnish has had to evict from cache before
they expired to make room for other content. If it is always 0, there is no
point increasing the size of the cache since the cache isn't full. If it's
climbing steadily a bigger cache could improve cache efficiency.

esi_errors, esi_warnings If you use Edge Side Includes (ESI), these somewhat hidden counters can
be helpful to determine if the ESI syntax the web server is sending is valid.

uptime Varnish' uptime. Useful to spot if Varnish has been restarted, either
manually or by bugs. Particularly useful if a monitor tool uses it.

Section 2.11 varnishstat Page 27

2.12 The management interface
Varnish offers a management interface (Historically called the Telnet interface.), assuming it was started
with a -T option. You can use the management interface to:

• Change parameters without restarting varnish

• Reload VCL

• View the most up-to-date documentation for parameters

There are a few other uses too which you can read about using the help-command after you connect to
the management interface with varnishadm.

The service varnish reload command uses the management interface to reload VCL without
restarting Varnish.

Keep the following in mind when using the management interface:

1. Any changes you make are done immediately on the running Varnish instance.

2. Changes are not persistent across restarts of Varnish. If you change a parameter and you want the
change to apply if you restart Varnish, you need to also store it in the regular configuration for the
boot script.

Because the management interface is not encrypted, only has limited authentication and still allows
almost total control over Varnish, it is important to protect it. Using the -S option offers reasonably good
access control, but does not protect against more elaborate attacks, like man in the middle attacks -- the
interface is not encrypted.

The simplest way to protect the management interface is to only have it listen on localhost (127.0.0.1).
Combined with the secret file, you can now offer access to the interface on a user-by-user basis by
adjusting the read permission on the secret file. The secret file usually lives in /etc/varnish/secret.
The content is not a password, but a shared secret (it is never transmitted over the interface).

Note

Newer Varnish-versions will automatically detect the correct arguments for varnishadm using the
shared memory log. For older versions, you always had to specify at least the -T-option when
using varnishadm.

This automatic detection relies on the -n option since varnishadm needs to find the shared
memory log.

For remote access you will always specify -T and -S since a remote varnishadm can't read
the shared memory log.

Page 28 Section 2.12 The management interface

2.13 Exercise: Try out the tools

1. Run varnishstat and varnishlog while performing a few requests.

2. Make varnishlog only print client-requests where the RxURL-tag contains /favicon.ico.

3. Use varnishadm to determine the default value for the default_ttl-parameter, and what it
does.

As you are finishing up this exercise, you hopefully begin to see the usefulness of the various Varnish
tools. varnishstat and varnishlog are the two most used tools, and are usually what you need for
sites that are not in production yet.

The various arguments for varnishlog are mostly designed to help you find exactly what you want, and
filter out the noise. On production traffic, the amount of log data that Varnish produces is staggering, and
filtering is a requirement for using varnishlog effectively.

Section 2.13 Exercise: Try out the tools Page 29

3 Tuning
This chapter is for the system administration course only

This chapter will cover:

• Architecture

• Best practices

• Parameters

Tuning Varnish is two-fold. Perhaps the most important aspect of it is is getting your VCL straight. For
now, though, we will focus on tuning Varnish for your hardware, operating system and network.

To be able to do that, knowledge of the process- and thread-architecture is helpful.

The internal architecture of Varnish is of some interest, both because it is chiefly responsible for the
performance you will be able to achieve with Varnish, and because it affects how you integrate Varnish in
your own architecture.

There are several aspects of the design that was unique to Varnish when it was originally implemented.
Truly good solutions is the aim of Varnish, regardless of whether that means reusing ancient ideas or
coming up with something radically different.

Page 30 Section 3 Tuning

3.1 Process Architecture
The multi-process architecture:

3.1.1 The management process
Varnish has two main processes: the management process and the child process. The management
process apply configuration changes (VCL and parameters), compile VCL, monitor Varnish, initialize
Varnish and provides a command line interface, accessible either directly on the terminal or through a
management interface.

The management process polls the child process every few seconds to see if it's still there. If it doesn't get
a reply within a reasonable time, the management process will kill the child and start it back up again. The
same happens if the child unexpectedly exits, for example from a segmentation fault or assert error.

This ensures that even if Varnish does contain a critical bug, it will start back up again fast. Usually within
a few seconds, depending on the conditions.

All of this is logged to syslog. This makes it crucially important to monitor the syslog, otherwise you may
never even know unless you look for them, because the perceived downtime is so short.

Note

Varnish Software and the Varnish community at large occasionally get requests for assistance in
performance tuning Varnish that turn out to be crash-issues. Because the Varnish management
thread starts the child up so fast, the users don't even notice the down time, only the extra loading
time as Varnish is constantly emptying its cache.

This is easily avoidable by paying attention to syslog and the uptime counter in varnishstat.

Section 3.1 Process Architecture Page 31

3.1.2 The child process
The child process consist of several different types of threads, including, but not limited to:

• Acceptor thread to accept new connections and delegate them.

• Worker threads - one per session. It's common to use hundreds of worker threads.

• Expiry thread, to evict old content from the cache.

Varnish uses workspaces to reduce the contention between each thread when they need to acquire or
modify memory. There are multiple workspaces, but the most important one is the session workspace,
which is used to manipulate session data. An example is changing www.example.com to example.com
before it is entered into the cache, to reduce the number of duplicates.

It is important to remember that even if you have 5MB of session workspace and are using 1000 threads,
the actual memory usage is not 5GB. The virtual memory usage will indeed be 5GB, but unless you
actually use the memory, this is not a problem. Your memory controller and operating system will keep
track of what you actually use.

To communicate with the rest of the system, the child process uses a shared memory log accessible from
the file system. This means that if a thread needs to log something, all it has to do is grab a lock, write to a
memory area and then free the lock. In addition to that, each worker thread has a cache for log data to
reduce lock contention.

The log file is usually about 80MB, and split in two. The first part is counters, the second part is request
data. To view the actual data, a number of tools exist that parses the shared memory log. Because the
log-data is not meant to be written to disk in its raw form, Varnish can afford to be very verbose. You then
use one of the log-parsing tools to extract the piece of information you want - either to store it permanently
or to monitor Varnish in real-time.

3.1.3 VCL compilation
Configuring the caching policies of Varnish is done in the Varnish Configuration Language (VCL). Your
VCL is then interpreted by the management process into to C and then compiled by a normal C compiler -
typically gcc. Lastly, it is linked into the running Varnish instance.

As a result of this, changing configuration while Varnish is running is very cheap. Varnish may want to
keep the old configuration around for a bit in case it still has references to it, but the policies of the new
VCL takes effect immediately.

Because the compilation is done outside of the child process, there is no risk of affecting the running
Varnish by accidentally loading an ill-formated VCL.

A compiled VCL file is kept around until you restart Varnish completely, or until you issue vcl.discard
from the management interface. You can only discard compiled VCL files after all references to them are
gone, and the amount of references left is part of the output of vcl.list.

Page 32 Section 3.1.2 The child process

3.2 Storage backends
Varnish supports different methods of allocating space for the cache, and you choose which one you want
with the -s argument.

• file

• malloc

• persistent (experimental)

Note

As a Rule of thumb use: malloc if it fits in memory, file if it doesn't. Expect around 1kB of overhead
per object cached.

They approach the same basic problem from two different angles. With the malloc-method, Varnish will
request the entire size of the cache with a malloc() (memory allocation) library call. The operating system
divides the cache between memory and disk by swapping out what it can't fit in memory.

The alternative is to use the file storage backend, which instead creates a file on a filesystem to contain
the entire cache, then tell the operating system through the mmap() (memory map) system call to map the
entire file into memory if possible.

The file storage method does not retain data when you stop or restart Varnish! This is what persistent
storage is for. When -s file is used, Varnish does not keep track of what is written to disk and what is
not. As a result, it's impossible to know whether the cache on disk can be used or not — it's just random
data. Varnish will not (and can not) re-use old cache if you use -s file.

While malloc will use swap to store data to disk, file will use memory to cache the data instead. Varnish
allow you to choose between the two because the performance of the two approaches have varied
historically.

The persistent storage backend is similar to file, but experimental. It does not yet gracefully handle
situations where you run out of space. We only recommend using persistent if you have a large amount of
data that you must cache and are prepared to work with us to track down bugs.

When choosing storage backend, the rule of thumb is to use malloc if your cache will be contained entirely
or mostly in memory, while the file storage backend performs far better when you need a large cache that
exceeds the physical memory available. This might vary based on the kernel you use, but seems to be the
case for 2.6.18 and later Linux kernel, in addition to FreeBSD.

It is important to keep in mind that the size you specify with the -s argument is the size for the actual
cache. Varnish has an overhead on top of this for keeping track of the cache, so the actual memory
footprint of Varnish will exceed what the '-s' argument specifies if the cache is full. The current estimate
(subject to change on individual Varnish-versions) is that about 1kB of overhead needed for each object.
For 1 million objects, that means 1GB extra memory usage.

In addition to the per-object overhead, there is also a fairly static overhead which you can calculate by
starting Varnish without any objects. Typically around 100MB.

Section 3.2 Storage backends Page 33

3.3 The shared memory log
Varnish' shared memory log is used to log most data. It's sometimes called a shm-log, and operates on a
round-robin capacity.

There's not much you have to do with the shared memory log, except ensure that it does not cause I/O.
This is easily accomplished by putting it on a tmpfs.

This is typically done in '/etc/fstab', and the shmlog is normally kept in '/var/lib/varnish' or equivalent
locations. All the content in that directory is safe to delete.

The shared memory log is not persistent, so do not expect it to contain any real history.

The typical size of the shared memory log is 80MB. If you want to see old log entries, not just real-time,
you can use the -d argument for varnishlog: varnishlog -d.

Warning

Some packages will use -s file by default with a path that puts the storage file in the same
directory as the shmlog. You want to avoid this.

Page 34 Section 3.3 The shared memory log

3.4 Tunable parameters

• In the CLI:

param.show -l

• Don't fall for the copy/paste tips

• Test the parameters in CLI, then store them in the configuration file

Varnish has many different parameters which can be adjusted to make Varnish act better under specific
workloads or with specific software and hardware setups. They can all be viewed with param.show in
the management interface and set with the -p option passed to Varnish - or directly in the management
interface.

Remember that changes made in the management interface are not stored anywhere, so unless you store
your changes in a startup script, they will be lost when Varnish restarts.

The general advice with regards to parameters is to keep it simple. Most of the defaults are very good,
and even though they might give a small boost to performance, it's generally better to use safe defaults if
you don't have a very specific need.

A few hidden commands exist in the CLI, which can be revealed with help -d. These are meant
exclusively for development or testing, and many of them are downright dangerous. They are hidden for a
reason, and the only exception is perhaps debug.health, which is somewhat common to use.

Section 3.4 Tunable parameters Page 35

3.5 Threading model

• The child process runs multiple threads

• Worker threads are the bread and butter of the Varnish architecture

• Utility-threads

• Balance

The child process of Varnish is where the magic takes place. It consists of several distinct threads
performing different tasks. The following table lists some interesting threads, to give you an idea of what
goes on. The table is not complete.

Thread-name Amount of threads Task

cache-worker One per active connection Handle requests

cache-main One Startup

ban lurker One Clean bans

acceptor One Accept new connections

epoll/kqueue Configurable, default: 2 Manage thread pools

expire One Remove old content

backend poll One per backend poll Health checks

Most of the time, we only deal with the cache-worker threads when configuring Varnish. With the
exception of the amount of thread pools, all the other threads are not configurable.

For tuning Varnish, you need to think about your expected traffic. The thread model allows you to use
multiple thread pools, but time and experience has shown that as long as you have 2 thread pools, adding
more will not increase performance.

The most important thread setting is the number of worker threads.

Note

If you run across tuning advice that suggests running one thread pool for each CPU core, rest
assured that this is old advice. Experiments and data from production environments have revealed
that as long as you have two thread pools (which is the default), there is nothing to gain by
increasing the number of thread pools.

Page 36 Section 3.5 Threading model

3.6 Threading parameters

• Thread pools can safely be ignored

• Maximum: Roughly 5000 (total)

• Start them sooner rather than later

• Maximum and minimum values are per thread pool

3.6.1 Details of threading parameters
While most parameters can be left to the defaults, the exception is the number of threads.

Varnish will use one thread for each session and the number of threads you let Varnish use is directly
proportional to how many requests Varnish can serve concurrently.

The available parameters directly related to threads are:

Parameter Default value

thread_pool_add_delay 2 [milliseconds]

thread_pool_add_threshold 2 [requests]

thread_pool_fail_delay 200 [milliseconds]

thread_pool_max 500 [threads]

thread_pool_min 5 [threads]

thread_pool_purge_delay 1000 [milliseconds]

thread_pool_stack 65536 [bytes]

thread_pool_timeout 300 [seconds]

thread_pools 2 [pools]

thread_stats_rate 10 [requests]

Among these, thread_pool_min and thread_pool_max are most important. The thread_pools
parameter is also of some importance, but mainly because it is used to calculate the final number of
threads.

Varnish operates with multiple pools of threads. When a connection is accepted, the connection is
delegated to one of these thread pools. The thread pool will further delegate the connection to available
thread if one is available, put the connection on a queue if there are no available threads or drop the
connection if the queue is full. By default, Varnish uses 2 thread pools, and this has proven sufficient for
even the most busy Varnish server.

For the sake of keeping things simple, the current best practice is to leave thread_pools at the default 2
[pools].

Section 3.6 Threading parameters Page 37

3.6.2 Number of threads
Varnish has the ability to spawn new worker threads on demand, and remove them once the load is
reduced. This is mainly intended for traffic spikes. It's a better approach to try to always keep a few
threads idle during regular traffic than it is to run on a minimum amount of threads and constantly spawn
and destroy threads as demand changes. As long as you are on a 64-bit system, the cost of running a few
hundred threads extra is very limited.

The thread_pool_min parameter defines how many threads will be running for each thread pool even
when there is no load. thread_pool_max defines the maximum amount of threads that will be used per
thread pool.

The defaults of a minimum of 5 [threads] and maximum 500 [threads] threads per thread pool and 2
[pools] will result in:

• At any given time, at least 5 [threads] * 2 [pools] worker threads will be running

• No more than 500 [threads] * 2 [pools] threads will run.

We rarely recommend running with more than 5000 threads. If you seem to need more than 5000 threads,
it's very likely that there is something not quite right about your setup, and you should investigate
elsewhere before you increase the maximum value.

For minimum, it's common to operate with 500 to 1000 threads minimum (total). You can observe if this is
enough through varnishstat, by looking at the N queued work requests (n_wrk_queued) counter over
time. It should be fairly static after startup.

3.6.3 Timing thread growth
Varnish can use several thousand threads, and has had this capability from the very beginning. Not all
operating system kernels were prepared to deal with this, though, so the parameter
thread_pool_add_delay was added which ensures that there is a small delay between each thread
that spawns. As operating systems have matured, this has become less important and the default value of
thread_pool_add_delay has been reduced dramatically, from 20ms to 2ms.

There are a few, less important parameters related to thread timing. The thread_pool_timeout is
how long a thread is kept around when there is no work for it before it is removed. This only applies if you
have more threads than the minimum, and is rarely changed.

Another less important parameter is the thread_pool_fail_delay, which defines how long to wait
after the operating system denied us a new thread before we try again.

Page 38 Section 3.6.2 Number of threads

3.7 System parameters
As Varnish has matured, fewer and fewer parameters require tuning. The sess_workspace is one of
the parameters that could still pose a problem.

• sess_workspace - incoming HTTP header workspace (from client)

• Common values range from the default of 65536 [bytes] to 10MB

• ESI typically requires exponential growth

• Remember: It's all virtual - not physical memory.

Workspaces are some of the things you can change with parameters. The session workspace is how
much memory is allocated to each HTTP session for tasks like string manipulation of incoming headers. It
is also used to modify the object returned from a web server before the precise size is allocated and the
object is stored read-only.

Some times you may have to increase the session workspace to avoid running out of workspace.

As most of the parameters can be left unchanged, we will not go through all of them, but take a look at the
list param.show gives you to get an impression of what they can do.

Section 3.7 System parameters Page 39

3.8 Timers

Parameter Default Description Scope

connect_timeout 0.700000 [s] OS/network latency Backend

first_byte_timeout 60.000000 [s] Page generation? Backend

between_bytes_timeout 60.000000 [s] Hiccoughs? Backend

send_timeout 60 [seconds] Client-in-tunnel Client

sess_timeout 5 [seconds] keep-alive timeout Client

cli_timeout 10 [seconds] Management thread->child Management

The timeout-parameters are generally set to pretty good defaults, but you might have to adjust them for
unusual applications. The connection timeout is tuned for a geographically close web server, and might
have to be increased if your Varnish server and web server are not close.

Keep in mind that the session timeout affects how long sessions are kept around, which in turn affects file
descriptors left open. It is not wise to increase the session timeout without taking this into consideration.

The cli_timeout is how long the management thread waits for the worker thread to reply before it
assumes it is dead, kills it and starts it back up. The default value seems to do the trick for most users
today.

Note

The connect_timeout is 0.700000 [s] by default. This is more than enough time for the typical
setup where Varnish talks to a backend in the same server room - but it may be too short if Varnish
is using a remote backend which may have more latency. If this is set too high, it will not let
Varnish handle errors gracefully.

An other use-case for increasing connect_timeout occurs when virtual machines are involved
in the stack, as they can increase the connection time significantly.

Page 40 Section 3.8 Timers

3.9 Exercise: Tune first_byte_timeout

1. Create a small CGI script in /usr/lib/cgi-bin/test.cgi containing:

#! /bin/sh
sleep 5
echo "Content-type: text/plain"
echo "Cache-control: max-age=0"
echo
echo "Hello world"
date

2. Make it executable.

3. Test that it works outside of Varnish.

4. Start Varnish, test that it works through Varnish.

5. Set first_byte_timeout to 2s.

6. Check that it doesn't work.

Section 3.9 Exercise: Tune first_byte_timeout Page 41

3.10 Exercise: Configure threading
While performing this exercise, watch the n_wrk counter in varnishstat to determine the number of
threads that are running.

1. Start Varnish.

2. Change the thread_pool_min and thread_pool_max parameters to get. 100 threads running
at any given time, but never more than 400.

3. Make the changes work across restarts of Varnish.

Extra: Experiment with thread_pool_add_delay and thread_pool_timeout while watching
varnishstat to see how thread creation and destruction is affected. Does thread_pool_timeout
affect already running threads?

You can also try changing the thread_pool_stack variable to a low value. This will only affect new
threads, but try to find out how low you can set it, and what happens if it's too low.

Note

It's not common to modify thread_pool_stack, thread_pool_add_delay or
thread_pool_timeout. These extra assignments are for educational purposes, and not
intended as an encouragement to change the values.

Page 42 Section 3.10 Exercise: Configure threading

4 HTTP
This chapter is for the webdeveloper course only

This chapter covers:

• Protocol basics

• Requests and responses

• HTTP request/response control flow

• Statelessness and idempotence

• Cache related headers

HTTP is at the heart of Varnish, or rather the model HTTP represents.

This chapter will cover the basics of HTTP as a protocol, how it's used in the wild, and delve into caching
as it applies to HTTP.

Section 4 HTTP Page 43

4.1 Protocol basics

• Hyper-Text Transfer Protocol, HTTP, is at the core of the web

• Specified by the IETF, the latest version (HTTP/1.1) is available from http://tools.ietf.org/html/rfc2616

• A request consists of a request method, headers and an optional request body.

• A response consists of a response status, headers and an optional response body.

• Multiple requests can be sent over a single connection, in serial.

• Clients will open multiple connections to fetch resources in parallel.

HTTP is a networking protocol for distributed systems. It is the foundation of data communication for the
Web. The development of this standard is done by the IETF and the W3C. The latest version of the
standard is HTTP/1.1.

A new version of HTTP called HTTP bis is under development, you can follow the work document at
http://datatracker.ietf.org/wg/httpbis/charter/. Basically HTTP bis will be HTTP/1.1 with new features for
example a better caching of web pages.

Page 44 Section 4.1 Protocol basics

http://tools.ietf.org/html/rfc2616
http://datatracker.ietf.org/wg/httpbis/charter/

4.2 Requests

• Standard request methods are: GET, POST, HEAD, OPTIONS, PUT, DELETE, TRACE, or
CONNECT.

• This is followed by a URI, e.g: /img/image.png or /index.html

• Usually followed by the HTTP version

• A new-line (CRLF), followed by an arbitrary amount of CRLF-separated headers (Accept-Language,
Cookie, Host, User-Agent, etc).

• A single empty line, ending in CRLF.

• An optional message body, depending on the request method.

Each request has the same, strict and fairly simple pattern. A request method informs the web server what
sort of request this is: Is the client trying to fetch a resource (GET), or update some data(POST)? Or just
get the headers of a resource (HEAD)?

There are strict rules that apply to the request methods. For instance, a GET request can not contain a
request body, but a POST request can.

Similarly, a web server can not attach a request body to a response to a HEAD body.

Section 4.2 Requests Page 45

4.3 Request example
GET / HTTP/1.1
Host: localhost
User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.5; fr; rv:1.9.2.16) Gecko/20110319 Firefox/3.6.16
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: fr,fr-fr;q=0.8,en-us;q=0.5,en;q=0.3
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 115
Connection: keep-alive
Cache-Control: max-age=0

The above is a typical HTTP GET request for the / resource.

Note that the Host-header contains the hostname as seen by the browser. The above request was
generated by entering http://localhost/ in the browser. The browser automatically adds a number of
headers. Some of these will vary depending on language settings, others will vary depending on whether
the client has a cached copy of the page already, or if the client is doing a refresh or forced refresh.

Whether the server honors these headers will depend on both the server in question and the specific
header.

The following is an example of a HTTP request using the POST method, which includes a request body:

POST /accounts/ServiceLoginAuth HTTP/1.1
Host: www.google.com
User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.5; fr; rv:1.9.2.16) Gecko/20110319 Firefox/3.6.16
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: fr,fr-fr;q=0.8,en-us;q=0.5,en;q=0.3
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 115
Connection: keep-alive
Referer: https://www.google.com/accounts/ServiceLogin
Cookie: GoogleAccountsLocale_session=en;[...]
Content-Type: application/x-www-form-urlencoded
Content-Length: 288

ltmpl=default[...]&signIn=Sign+in&asts=

Page 46 Section 4.3 Request example

http://localhost/

4.4 Response

HTTP/1.1 200 OK
Cache-Control: max-age=150
Content-Length: 150

[data]

• A HTTP response contains the HTTP versions, response code(e.g: 200) and response message
(e.g: OK).

• CRLF as line separator

• A number of headers

• Headers are terminated with a blank line.

• Optional response body

The HTTP response is similar to the request itself. The response code informs the browser both whether
the request succeeded and what type of response this is. The response message is a text-representation
of the same information, and is often ignored by the browser itself.

Examples of status codes are 200 OK, 404 File Not Found, 304 Not Modified and so fort. They are all
defined in the HTTP standard, and grouped into the following categories:

• 1xx: Informational - Request received, continuing process

• 2xx: Success - The action was successfully received, understood, and accepted

• 3xx: Redirection - Further action must be taken in order to complete the request

• 4xx: Client Error - The request contains bad syntax or cannot be fulfilled

• 5xx: Server Error - The server failed to fulfill an apparently valid request

Section 4.4 Response Page 47

4.5 Response example

HTTP/1.1 200 OK
Server: Apache/2.2.14 (Ubuntu)
X-Powered-By: PHP/5.3.2-1ubuntu4.7
Cache-Control: public, max-age=86400
Last-Modified: Mon, 04 Apr 2011 04:13:41 +0000
Expires: Sun, 11 Mar 1984 12:00:00 GMT
Vary: Cookie,Accept-Encoding
ETag: "1301890421"
Content-Type: text/html; charset=utf-8
Content-Length: 23562
Date: Mon, 04 Apr 2011 09:02:26 GMT
X-Varnish: 1886109724 1886107902
Age: 17324
Via: 1.1 varnish
Connection: keep-alive

(data)

Page 48 Section 4.5 Response example

4.6 HTTP request/response control flow

The client sends an HTTP request to the server which returns an HTTP response with the message body.

Section 4.6 HTTP request/response control flow Page 49

4.7 Statelesness and idempotence
statelesness

HTTP is by definition a stateless protocol which means that in theory your browser has to reconnect
to the server for every request. In practice there is a header called Keep-Alive you may use if you
want to keep the connection open between the client (your browser) and the server.

idempotence

Imdempotence means that an operation can be applied multiple times without changing the result.
GET and PUT HTTP request are expected to be idempotent whereas POST requests are not. In
other words, you can not cache POST HTTP responses.

For more discussion about idempotence http://queue.acm.org/detail.cfm?id=2187821.

Page 50 Section 4.7 Statelesness and idempotence

http://queue.acm.org/detail.cfm?id=2187821

4.8 Cache related headers
HTTP provides a list of headers dedicated to page caching and cache invalidation. The most important
ones are :

• Expires

• Cache-Control

• Etag

• Last-Modified

• If-Modified-Since

• If-None-Match

• Vary

• Age

Section 4.8 Cache related headers Page 51

4.9 Exercise : Test various Cache headers
Before we talk about all the various cache headers and cache mechanisms, we will use
httpheadersexample.php to experiment and get a sense of what it's all about.

Try both clicking the links twice, hitting refresh and forced refresh (usually done by hitting control-F5,
depending on browser).

1. Try out the Expires-header and see how the browser and Varnish behave.

2. What happens when both Expires and Cache-Control is present?

3. Test the If-Modified-Since request too. Does the browser issue a request to Varnish? If the item was
in cache, does Varnish query the web-server?

4. Try the Vary-test by using two different browsers at the same time.

When performing this exercise, try to see if you can spot the patterns. There are many levels of cache on
the Web, and you have to think about more than just Varnish.

If it hasn't already, it's likely that browser cache will confuse you at least a few times through this course.
When that happens, pull up varnishlog or another browser.

Page 52 Section 4.9 Exercise : Test various Cache headers

4.10 Expires
The Expires response header field gives the date/time after which the response is considered stale. A
stale cache item will not be returned by any cache (proxy cache or client cache).

The syntax for this header is:

Expires: GMT formatted date

It is recommended not to define Expires too far in the future. Setting it to 1 year is usually enough.

Using Expires does not prevent the cached resource to be updated. If a resource is updated changing its
name (by using a version number for instance) is possible.

Expires works best for any file that is part of your design like JavaScripts stylesheets or images.

Section 4.10 Expires Page 53

4.11 Cache-Control
The Cache-Control header field specifies directives that must be applied by all caching mechanisms (from
proxy cache to browser cache). Cache-Control accepts the following arguments (only the most relevant
are described):

• public: The response may be cached by any cache.

• no-store: The response body must not be stored by any cache mechanism;

• no-cache: Authorizes a cache mechanism to store the response in its cache but it must not reuse it
without validating it with the origin server first. In order to avoid any confusion with this argument
think of it as a "store-but-do-no-serve-from-cache-without-revalidation" instruction.

• max-age: Specifies the period in seconds during which the cache will be considered fresh;

• s-maxage: Like max-age but it applies only to public caches;

• must-revalidate: Indicates that a stale cache item can not be serviced without revalidation with the
origin server first;

Unlike Expires, Cache-Control is both a request and a response header, here is the list of arguments you
may use for each context:

Argument Request Response

no-cache X X

no-store X X

max-age X X

s-maxage X

max-stale X

min-fresh X

no-transform X X

only-if-cached X

public X

private X

must-revalidate X

proxy-revalidate X

Example of a Cache-Control header:

Cache-Control: public, must-revalidate, max-age=2592000

Page 54 Section 4.11 Cache-Control

Note

As you might have noticed Expires and Cache-Control do more or less the same job,
Cache-Control gives you more control though. There is a significant difference between these two
headers:

• Cache-Control uses relative times in seconds, cf (s)max-age

• Expires always returns an absolute date

Note

Cache-Control always overrides Expires.

Note

By default, Varnish does not care about the Cache-Control request header. If you want to let users
update the cache via a force refresh you need to do it yourself.

Section 4.11 Cache-Control Page 55

4.12 Last-Modified
The Last-Modified response header field indicates the date and time at which the origin server believes
the variant was last modified. This headers may be used in conjunction with If-Modified-Since and
If-None-Match.

Example of a Last-Modified header:

Last-Modified: Wed, 01 Sep 2004 13:24:52 GMT

Page 56 Section 4.12 Last-Modified

4.13 If-Modified-Since
The If-Modified-Since request header field is used with a method to make it conditional:

• if the requested variant has not been modified since the time specified in this field, an entity will not
be returned from the server;

• instead, a 304 (not modified) response will be returned without any message-body.

Example of an If-Modified-Since header:

If-Modified-Since: Wed, 01 Sep 2004 13:24:52 GMT

Section 4.13 If-Modified-Since Page 57

4.14 If-None-Match
The If-None-Match request header field is used with a method to make it conditional.

A client that has one or more entities previously obtained from the resource can verify that none of those
entities is current by including a list of their associated entity tags in the If-None-Match header field.

The purpose of this feature is to allow efficient updates of cached information with a minimum amount of
transaction overhead. It is also used to prevent a method (e.g. PUT) from inadvertently modifying an
existing resource when the client believes that the resource does not exist.

Example of an If-None-Match header :

If-None-Match: "1edec-3e3073913b100"

Page 58 Section 4.14 If-None-Match

4.15 Etag
The ETag response header field provides the current value of the entity tag for the requested variant. The
idea behind Etag is to provide a unique value for a resource's contents.

Example of an Etag header:

Etag: "1edec-3e3073913b100"

Section 4.15 Etag Page 59

4.16 Pragma
The Pragma request header is a legacy header and should no longer be used. Some applications still
send headers like Pragma: no-cache but this is for backwards compatibility reasons only.

Any proxy cache should treat Pragma: no-cache as Cache-Control: no-cache, and should not
be seen as a reliable header especially when used as a response header.

Page 60 Section 4.16 Pragma

4.17 Vary
The Vary response header indicates the response returned by the origin server may vary depending on
headers received in the request.

The most common usage of Vary is to use Vary: Accept-Encoding, which tells caches (Varnish
included) that the content might look different depending on the Accept-Encoding-header the client sends.
In other words: The page can be delivered compressed or uncompressed depending on the client.

The Vary-header is one of the trickiest headers to deal with for a cache. A cache, like Varnish, does not
necessarily understand the semantics of a header, or what part triggers different variants of a page.

As a result, using Vary: User-Agent for instance tells a cache that for ANY change in the
User-Agent-header, the content might look different. Since there are probably thousands of User-Agent
strings out there, this means you will drastically reduce the efficiency of any cache method.

An other example is using Vary: Cookie which is actually not a bad idea. Unfortunately, you can't
issue Vary: Cookie(but only THESE cookies: ...). And since a client will send you a great
deal of cookies, this means that just using Vary: Cookie is not necessarily sufficient. We will discuss
this further in the Content Composition chapter.

Note

From Varnish version 3, Varnish handles Accept-Encoding and Vary: Accept-Encoding for
you. This is because Varnish 3 has support for gzip compression. In Varnish 2 it was necessary to
normalize the Accept-Encoding-header, but this is redundant in Varnish 3.

Section 4.17 Vary Page 61

4.18 Age

• A cache server can send an additional response header, Age, to indicate the age of the response.

• Varnish (and other caches) does this.

• Browsers (and Varnish) will use the Age-header to determine how long to cache.

• E.g: for a max-age-based equation: cache duration = max-age - Age

• If you allow Varnish to cache for a long time, the Age-header could effectively disallow client-side
caches.

Consider what happens if you let Varnish cache content for a week, because you can easily invalidate the
cache Varnish keeps. If you do not change the Age-header, Varnish will happily inform clients that the
content is, for example, two days old, and that the maximum age should be no more than fifteen minutes.

Browsers will obey this. They will use the reply, but they will also realize that it has exceeded its max-age,
so they will not cache it.

Varnish will do the same, if your web-server emits and Age-header (or if you put one Varnish-server in
front of another).

We will see in later chapters how we can handle this in Varnish.

Page 62 Section 4.18 Age

4.19 Header availability summary
The table below lists HTTP headers seen above and wether they are a request header or a response one.

Header Request Response

Expires X

Cache-Control X X

Last-Modified X

If-Modified-Since X

If-None-Match X

Etag X

Pragma X X

Vary X

Age X

Section 4.19 Header availability summary Page 63

4.20 Cache-hit and misses
cache-hit

There is a cache-hit when Varnish returns a page from its cache instead of forwarding the request to the
origin server.

cache-miss

There is a cache-miss when Varnish has to forward the request to the origin server so the page can be
serviced.

Page 64 Section 4.20 Cache-hit and misses

4.21 Exercise: Use article.php to test Age

1. Modify the article.php-script to send an Age header that says 30 and Cache-Control:
max-age=60.

2. Watch varnishlog.

3. Send a request to Varnish for article.php. See what Age-Header Varnish replies with.

4. Is the Age-header an accurate method to determine if Varnish made a cache hit or not?

5. How long does Varnish cache the reply? How long would a browser cache it?

Also consider how you would avoid issues like this to begin with. We do not yet know how to modify
Varnish' response headers, but hopefully you will understand why you may need to do that.

Varnish is not the only part of your web-stack that parses and honors cache-related headers. The primary
consumer of such headers are the web browsers, and there might also be other caches along the way
which you do not control, like a company-wide proxy server.

By using s-maxage instead of max-age we limit the number of consumers to cache servers, but even
s-maxage will be used by caching proxies which you do not control.

In the next few chapters, you will learn how to modify the response headers Varnish sends. That way,
your web-server can emit response headers that are only seen and used by Varnish.

Section 4.21 Exercise: Use article.php to test Age Page 65

5 VCL Basics

• VCL as a state engine

• Basic syntax

• VCL_recv and VCL_fetch

• Regular expressions

The Varnish Configuration Language allows you to define your caching policy. You write VCL code which
Varnish will parse, translate to C code, compile and link to.

The following chapter focuses on the most important tasks you will do in VCL. Varnish has a number of
states that you can hook into with VCL, but if you master the vcl_fetch and vcl_recv methods, you
will be have covered the vast majority of the actual work you need to do.

VCL is often described as domain specific or a state engine. The domain specific part of it is that some
data is only available in certain states. For example: You can not access response headers before you've
actually started working on a response.

Page 66 Section 5 VCL Basics

5.1 The VCL State Engine

• Each request is processed separately.

• Each request is independent of any others going on at the same time, previously or later.

• States are related, but isolated.

• return(x); exits one state and instructs Varnish to proceed to the next state.

• Default VCL code is always present, appended below your own VCL.

Before we begin looking at VCL code, it's worth trying to understand the fundamental concepts behind
VCL.

When Varnish processes a request, it starts by parsing the request itself, separating the request method
from headers, verifying that it's a valid HTTP request and so on. When this basic parsing has completed,
the very first policy decisions can be done: Should Varnish even attempt to find this resource in the
cache? This decision is left to VCL, more specifically the vcl_recv method.

If you do not provide any vcl_recv function, the default VCL function for vcl_recv is executed. But
even if you do specify your own vcl_recv function, the default is still present. Whether it is executed or
not depends on whether your own VCL code terminates that specific state or not.

Tip

It is strongly advised to let the default VCL run whenever possible. It is designed with safety in
mind, which often means it'll handle any flaws in your VCL in a reasonable manner. It may not
cache as much, but often it's better to not cache some content instead of delivering the wrong
content to the wrong user.

There are exceptions, of course, but if you can not understand why the default VCL does not let
you cache some content, it is almost always worth it to investigate why instead of overriding it.

Section 5.1 The VCL State Engine Page 67

5.2 Syntax

• //, # and /* foo */ for comments

• sub $name functions

• No loops, limited variables

• Terminating statements, no return values

• Domain-specific

• Add as little or as much as you want

If you have worked with a programing language or two before, the basic syntax of Varnish should be
reasonably straight forward. It is inspired mainly by C and Perl.

The functions of VCL are not true functions in the sense that they accept variables and return values. To
send data inside of VCL, you will have to hide it inside of HTTP headers.

The "return" statement of VCL returns control from the VCL state engine to Varnish. If you define your
own function and call it from one of the default functions, typing "return(foo)" will not return execution from
your custom function to the default function, but return execution from VCL to Varnish. That is why we say
that VCL has terminating statements, not traditional return values.

For each domain, you can return control to Varnish using one or more different return values. These
return statements tell Varnish what to do next. Examples include "look this up in cache", "do not look this
up in the cache" and "generate an error message".

Page 68 Section 5.2 Syntax

5.3 VCL - request flow

Section 5.3 VCL - request flow Page 69

5.3.1 Detailed request flow

Page 70 Section 5.3.1 Detailed request flow

5.4 VCL - functions

• regsub(str, regex, sub)

• regsuball(str, regex, sub)

• ban_url(regex)

• ban(expression)

• purge;

• return(restart)

• return()

• hash_data()

VCL offers a handful of simple functions that allow you to modify strings, add bans, restart the VCL state
engine and return control from the VCL Run Time (VRT) environment to Varnish.

You will get to test all of these in detail, so the description is brief.

regsub() and regsuball() has the same syntax and does the same thing: They both take a string as input,
search it with a regular expression and replace it with another string. The difference between regsub() and
regsuball() is that the latter changes all occurrences while the former only affects the first match.

ban_url is one of the original ban functions provided, and are generally not used much. The more
flexible ban() function can perform the same task. ban_url(foo) is the equivalent of ban("req.url
~ " foo): Add a URL, host name excluded, to the ban list. We will go through purging in detail in later
chapters.

return(restart) offers a way to re-run the VCL logic, starting at vcl_recv. All changes made up until
that point are kept and the req.restarts variable is incremented. The max_restarts parameter defines
the maximum number of restarts that can be issued in VCL before an error is triggered, thus avoiding
infinite looping.

return() is used when execution of a VCL domain (for example vcl_recv) is completed and control is
returned to Varnish with a single instruction as to what should happen next. Return values are lookup,
pass, pipe, hit_for_pass, fetch, deliver and hash, but only a limited number of them are available in each
VCL domain.

Warning

ban_url() uses a regular expression instead of actual string matching. It will be removed in
Varnish 4. You should use ban() instead.

Section 5.4 VCL - functions Page 71

5.5 VCL - vcl_recv

• Normalize client-input

• Pick a backend web server

• Re-write client-data for web applications

• Decide caching policy based on client-input

• Access control

• Security barriers

• Fixing mistakes (e.g: index.htlm -> index.html)

vcl_recv is the first VCL function executed, right after Varnish has decoded the request into its basic
data structure. It has four main uses:

1. Modifying the client data to reduce cache diversity. E.g., removing any leading "www." in a URL.

2. Deciding caching policy based on client data. E.g., Not caching POST requests, only caching specific
URLs, etc

3. Executing re-write rules needed for specific web applications.

4. Deciding which Web server to use.

In vcl_recv you can perform the following terminating statements:

pass the cache, executing the rest of the Varnish processing as normal, but not looking up the content in
cache or storing it to cache.

pipe the request, telling Varnish to shuffle byte between the selected backend and the connected client
without looking at the content. Because Varnish no longer tries to map the content to a request, any
subsequent request sent over the same keep-alive connection will also be piped, and not appear in any
log.

lookup the request in cache, possibly entering the data in cache if it is not already present.

error - Generate a synthetic response from Varnish. Typically an error message, redirect message or
response to a health check from a load balancer.

It's also common to use vcl_recv to apply some security measures. Varnish is not a replacement for
Intrusion Detection Systems, but can still be used to stop some typical attacks early. Simple access
control lists can be applied in vcl_recv too. For further discussion about security in VCL, take a look at
the Security.vcl project, found at https://github.com/comotion/security.vcl.

Page 72 Section 5.5 VCL - vcl_recv

https://github.com/comotion/security.vcl

5.6 Default: vcl_recv

sub vcl_recv {
 if (req.restarts == 0) {
 if (req.http.x-forwarded-for) {
 set req.http.X-Forwarded-For =
 req.http.X-Forwarded-For + ", " + client.ip;
 } else {
 set req.http.X-Forwarded-For = client.ip;
 }
 }
 if (req.request != "GET" &&
 req.request != "HEAD" &&
 req.request != "PUT" &&
 req.request != "POST" &&
 req.request != "TRACE" &&
 req.request != "OPTIONS" &&
 req.request != "DELETE") {
 /* Non-RFC2616 or CONNECT which is weird. */
 return (pipe);
 }
 if (req.request != "GET" && req.request != "HEAD") {
 /* We only deal with GET and HEAD by default */
 return (pass);
 }
 if (req.http.Authorization || req.http.Cookie) {
 /* Not cacheable by default */
 return (pass);
 }
 return (lookup);
}

The default VCL for vcl_recv is designed to ensure a safe caching policy even with no modifications in
VCL. It has two main uses:

1. Only handle recognized HTTP methods and cache GET and HEAD

2. Do not cache data that is likely to be user-specific.

It is executed right after any user-specified VCL, and is always present. You can not remove it. However,
if you terminate the vcl_recv function using one of the terminating statements (pass, pipe, lookup,
error), the default VCL will not execute, as control is handed back from the VRT (VCL Run-Time) to
Varnish.

Most of the logic in the default VCL is needed for a well-behaving Varnish server, and care should be
taken when vcl_recv is terminated before reaching the default VCL. Consider either replicating all the
logic in your own VCL, or letting Varnish fall through to the default VCL.

Section 5.6 Default: vcl_recv Page 73

5.7 Example: Basic Device Detection
One way of serving different content for mobile devices and desktop browsers is to run some simple
parsing on the User-Agent header to create your own custom-header for mobile devices:

sub vcl_recv {
 if (req.http.User-Agent ~ "iPad" ||
 req.http.User-Agent ~ "iPhone" ||
 req.http.User-Agent ~ "Android") {
 set req.http.X-Device = "mobile";
 } else {
 set req.http.X-Device = "desktop";
 }
}

You can read more about different types of device detection at
https://www.varnish-cache.org/docs/trunk/users-guide/devicedetection.html

This simple VCL will create a request header called X-Device which will contain either mobile or
desktop. The Web server can then use this header to determine what page to serve, and inform Varnish
about it through Vary: X-Device.

It might be tempting to just send Vary: User-Agent, but that would either require you to normalize the
User-Agent header itself and losing the detailed information on the browser, or it would drastically inflate
the cache size by keeping possibly hundreds of different variants for each object just because there are
tiny variations of the User-Agent header.

For more information on the Vary-header, see the HTTP chapter.

Note

If you do use Vary: X-Device, you might want to send Vary: User-Agent to the users after
Varnish has used it. Otherwise, intermediary caches will not know that the page looks different for
different devices.

Page 74 Section 5.7 Example: Basic Device Detection

https://www.varnish-cache.org/docs/trunk/users-guide/devicedetection.html

5.8 Exercise: Rewrite URLs and Host headers

1. Copy the original Host-header (req.http.Host) and URL (req.url) to two new request header of
your choice. E.g: req.http.x-host and req.http.x-url.

2. Ensure that www.example.com and example.com are cached as one, using regsub().

3. Rewrite all URLs under http://sport.example.com to http://example.com/sport/. For example:
http://sport.example.com/article1.html to http://example.com/sport/article1.html.

4. Use varnishlog to verify the result.

Extra: Make sure / and /index.html is cached as one object. How can you verify that it is, without changing
the content?

Extra 2: Make the redirection work for any domain with sport. at the front. E.g: sport.example.com,
sport.foobar.example.net, sport.blatti, etc.

The syntax for regsub() is regsub(<string>, <regex>, <replacement>);. string is the input
string, in this case, req.http.host. regex is the regular expression matching whatever content you
need to change. "^www." matches a string that begins (^) with www followed by a literal dot. replacement
is what you desire to change it with, "" can be used to remove it.

To write a header, use set req.http.headername = "value"; or set req.http.headername
= regsub(...);.

To verify the result, you can use varnishlog, or lwp-request. Example command:

GET -H "Host: www.example.com" -USsed http://localhost/

You can use if () to perform a regular expression if-test, or a plain string test. In the above exercise, both
are valid. E.g.:

if (req.http.host ~ "^sport\.example\.com$") {

is equivalent with:

if (req.http.host == "sport.example.com") {

It is slightly faster to use == to perform a string comparison instead of a regular expression, but negligible.

Tip

You do not need to use regsub() on the host header for this exercise unless you want it to apply for
all instances of sport.<some domain>. You will, however, need it to prepend /sport to the
req.url. Remember, you can match just the beginning of the line with
regsub(input,"^",replacement)

Section 5.8 Exercise: Rewrite URLs and Host headers Page 75

5.9 Solution: Rewrite URLs and Host headers

sub vcl_recv {
 set req.http.x-host = req.http.host;
 set req.http.x-url = req.url;
 set req.http.host = regsub(req.http.host, "^www\.", "");

 if (req.http.host == "sport.example.com") {
 set req.http.host = "example.com";
 set req.url = regsub(req.url, "^", "/sport");
 }

 // Or:

 if (req.http.host ~ "^sport\.") {
 set req.http.host = regsub(req.http.host,"^sport\.", "");
 set req.url = regsub(req.url, "^", "/sport");
 }
}

Note how both are valid.

Page 76 Section 5.9 Solution: Rewrite URLs and Host headers

5.10 VCL - vcl_fetch

• Sanitize server-response

• Override cache duration

The vcl_fetch function is the backend-counterpart to vcl_recv. In vcl_recv you can use
information provided by the client to decide on caching policy, while you use information provided by the
server to further decide on a caching policy in vcl_fetch.

If you chose to pass the request in an earlier VCL function (e.g.: vcl_recv), you will still execute the logic
of vcl_fetch, but the object will not enter the cache even if you supply a cache time.

You have multiple tools available in vcl_fetch. First and foremost you have the beresp.ttl variable,
which defines how long an object is kept.

Warning

If the request was not passed before reaching vcl_fetch, the beresp.ttl is still used even
when you perform a hit_for_pass in vcl_fetch. This is an important detail that is important
to remember: When you perform a pass in vcl_fetch you cache the decision you made. In
other words: If beresp.ttl is 10 hours and you issue a pass, an object will be entered into the
cache and remain there for 10 hours, telling Varnish not to cache. If you decide not to cache a
page that returns a "500 Internal Server Error", for example, this is critically important, as a
temporary glitch on a page can cause it to not be cached for a potentially long time.

Always set beresp.ttl when you issue a pass in vcl_fetch.

Returning deliver in vcl_fetch tells Varnish to cache, if possible. Returning hit_for_pass tells it
not to cache, but does not run the vcl_pass function of VCL for this specific client. The next client
asking for the same resource will hit the hitpass-object and go through vcl_pass.

Typical tasks performed in vcl_fetch include:

• Overriding cache time for certain URLs

• Stripping Set-Cookie headers that are not needed

• Stripping bugged Vary headers

• Adding helper-headers to the object for use in banning (more information in later chapters)

• Applying other caching policies

Section 5.10 VCL - vcl_fetch Page 77

5.11 Default: vcl_fetch

sub vcl_fetch {
 if (beresp.ttl <= 0s ||
 beresp.http.Set-Cookie ||
 beresp.http.Vary == "*") {
 /*
 * Mark as "Hit-For-Pass" for the next 2 minutes
 */
 set beresp.ttl = 120 s;
 return (hit_for_pass);
 }
 return (deliver);
}

The default VCL for vcl_fetch is designed to avoid caching anything with a set-cookie header. There
are very few situations where caching content with a set-cookie header is desirable.

Page 78 Section 5.11 Default: vcl_fetch

5.12 The initial value of beresp.ttl
Before Varnish runs vcl_fetch, the beresp.ttl variable has already been set to a value. It will use
the first value it finds among:

• The s-maxage variable in the Cache-Control response header

• The max-age variable in the Cache-Control response header

• The Expires response header

• The default_ttl parameter.

Only the following status codes will be cached by default:

• 200: OK

• 203: Non-Authoritative Information

• 300: Multiple Choices

• 301: Moved Permanently

• 302: Moved Temporarily

• 307: Temporary Redirect

• 410: Gone

• 404: Not Found

You can still cache other status codes, but you will have to set the beresp.ttl to a positive value in
vcl_fetch yourself.

Since all this is done before vcl_fetch is executed, you can modify the Cache-Control headers without
affecting beresp.ttl, and vice versa.

A sensible approach is to use the s-maxage variable in the Cache-Control header to instruct Varnish
to cache, then have Varnish remove that variable before sending it to clients using regsub() in
vcl_fetch. That way, you can safely set max-age to what cache duration the clients should use and
s-maxage for Varnish without affecting intermediary caches.

Warning

Varnish, browsers and intermediary will parse the Age response header. If you stack multiple
Varnish servers in front of each other, this means that setting s-maxage=300 will mean that the
object really will be cached for only 300 seconds throughout all Varnish servers.

On the other hand, if your web server sends Cache-Control: max-age=300,
s-maxage=3600 and you do not remove the Age response header, Varnish will send an
Age-header that exceeds the max-age of the objects, which will cause browsers to not cache the
content.

Section 5.12 The initial value of beresp.ttl Page 79

5.13 Example: Enforce caching of .jpg urls for 60 seconds

sub vcl_fetch {
 if (req.url ~ "\.jpg$") {
 set beresp.ttl = 60s;
 }
}

The above example is typical for a site migrating to Varnish. Setting beresp.ttl ensures it's cached.

Keep in mind that the default VCL will still be executed, which means that an image with a Set-Cookie
header will not be cached.

Page 80
Section 5.13 Example: Enforce caching of .jpg urls for 60

seconds

5.14 Example: Cache .jpg for 60 only if s-maxage isn't present

sub vcl_fetch {
 if (beresp.http.cache-control !~ "s-maxage" && req.url ~ "\.jpg$") {
 set beresp.ttl = 60s;
 }
}

The Cache-Control header can contain a number of headers. Varnish evaluates it and looks for s-maxage
and max-age. It will set the TTL to the value of s-maxage if found. If s-maxage isn't found, it will use
max-age. If neither exist, it will use the Expires header to set the ttl. If none of those headers exist, it will
use the default TTL.

This is done before vcl_fetch is executed and the process can be seen by looking at the TTL tag of
varnishlog.

The purpose of the above example is to allow a gradual migration to using a backend-controlled caching
policy. If the backend supplies s-maxage, it will be used, but if it is missing, a forced TTL is set.

Section 5.14 Example: Cache .jpg for 60 only if s-maxage
isn't present Page 81

5.15 Exercise: Avoid caching a page

1. Write a VCL which avoids caching the index page at all. It should cover both accessing / and
/index.html

2. Write a VCL that makes Varnish honor the following headers:

Cache-Control: no-cache
Cache-Control: private
Pragma: no-cache

When trying this out, remember that Varnish keeps the Host-header in req.http.host and the part
after the hostname in req.url.

For http://www.example.com/index.html, the http:// part is not seen by Varnish at all, but
req.http.host will have the value of www.example.com and req.url the value of /index.html. Note
how the leading / is included in req.url.

Varnish only obeys the first header it finds of "s-maxage" in Cache-Control, "max-age" in Cache-Control or
the Expire header. However, it is often necessary to check the values of other headers too - vcl_fetch
is the place to do that.

Page 82 Section 5.15 Exercise: Avoid caching a page

5.16 Solution: Avoid caching a page

sub vcl_recv {
 if (req.url ~ "^/index\.html" ||
 req.url ~ "^/$") { return(pass); }
}
// Or:
sub vcl_fetch {
 if (req.url ~ "^/index\.html" ||
 req.url ~ "^/$") { return(hit_for_pass); }
}

// Second part of exercise
sub vcl_fetch {
 if (beresp.http.cache-control ~ "(no-cache|private)" ||
 beresp.http.pragma ~ "no-cache") {
 set beresp.ttl = 0s;
 }
}

The above examples are both valid.

It is usually most convenient to do as much as possible in vcl_recv, and this is no exception. Even
though using pass in vcl_fetch is reasonable, it creates a hitpass object, which can create
unnecessary complexity. Whenever you do use pass in vcl_fetch, you should also make it a habit to
set the beresp.ttl to a short duration, to avoid accidentally adding a hitpass object that prevents
caching for a long time.

Section 5.16 Solution: Avoid caching a page Page 83

5.17 Exercise: Either use s-maxage or set ttl by file type
Write a VCL that:

• Uses Cache-Control: s-maxage where present

• Caches .jpg for 30 seconds if s-maxage isn't present

• Caches .html for 10 seconds if s-maxage isn't present

• Removes the Set-Cookie header if s-maxage OR the above rules indicates that Varnish should
cache.

Tip

Try solving each part of the exercise by itself first. Most somewhat complex VCL tasks are easily
solved when you divide the tasks into smaller bits and solve them individually.

Note

Varnish automatically reads s-maxage for you, so you only need to check if it is there or not - if it's
present, Varnish has already used it to set beresp.ttl.

Page 84
Section 5.17 Exercise: Either use s-maxage or set ttl by

file type

5.18 Solution: Either use s-maxage or set ttl by file type

sub vcl_fetch {
 if (beresp.http.cache-control !~ "s-maxage") {
 if (req.url ~ "\.jpg(\?|$)") {
 set beresp.ttl = 30s;
 unset beresp.http.Set-Cookie;
 }
 if (req.url ~ "\.html(\?|$)") {
 set beresp.ttl = 10s;
 unset beresp.http.Set-Cookie;
 }
 } else {
 if (beresp.ttl > 0s) {
 unset beresp.http.Set-Cookie;
 }
 }
}

There are many ways to solve this exercise, and this solution is only one of them. The first part checks
that s-maxage is /not/ present, then handles .jpg and .html files - including cookie removal. The second
part checks if s-maxage caused Varnish to set a positive ttl and consider it cacheable.

Section 5.18 Solution: Either use s-maxage or set ttl by
file type Page 85

5.19 Summary of VCL - Part 1

• VCL provides a state machine for controlling Varnish.

• Each request is handled independently.

• Building a VCL file is done one line at a time.

VCL is all about policy. By providing a state machine which you can hook into, VCL allows you to affect
the handling of any single request almost anywhere in the execution chain.

This provides both the pros and cons of any other programming language. There isn't going to be any
complete reference guide to how you can deal with every possible scenario in VCL, but on the other hand,
if you master the basics of VCL you can solve complex problems that nobody has thought about before.
And you can usually do it without requiring too many different sources of documentation.

Whenever you are working on VCL, you should think of what that exact line you are writing has to do. The
best VCL is built by having many independent sections that don't interfere with each other more than they
have to.

This is made easier by the fact that VCL also has a default - which is always present. If you just need to
modify one little thing in vcl_recv, you can do just that. You don't have to copy the default VCL, because
it will be executed after your own - assuming you don't have any return statements.

Page 86 Section 5.19 Summary of VCL - Part 1

6 VCL functions

• Start off with a cheat-sheet for variables

• Go through the remaining vcl functions: hash, pipe, miss, pass, hit, error and deliver.

• Add some "features" with VCL.

The following chapter will cover the parts of VCL where you typically venture to customize the behavior of
Varnish and not define caching policy.

These functions can be used to add custom headers, change the appearance of the Varnish error
message, add HTTP redirect features in Varnish, purge content and define what parts of a cached object
is unique.

After this chapter, you should know what all the VCL functions can be used for, and you'll be ready to dive
into more advanced features of Varnish and VCL.

Section 6 VCL functions Page 87

6.1 Variable availability in VCL

Variable recv fetch pass miss hit error deliver pipe hash

req.* R/W R/W R/W R/W R/W R/W R/W R/W R/W

bereq.* R/W R/W R/W R/W

obj.hits R R

obj.ttl R/W R/W

obj.grace R/W

obj.* R R/W

beresp.* R/W

resp.* R/W R/W

The above is a map of the most important variables and where you can read (R) from them and write (W)
to them.

Some variables are left out: client.* and server.* are by and large accessible everywhere, as is
the now variable.

Remember that changes made to beresp are stored in obj afterwards. And the resp.* variables are
copies of what's about to be returned - possibly of obj. A change to beresp will, in other words, affect
future obj.* and resp.* variables. Similar semantics apply to req.* and bereq.*. bereq.* is the
"backend request" as created from the original request. It may differ slightly - Varnish can convert HEAD
requests to GET for example.

Note

Many of these variables will be self-explaining during while you're working through these exercises,
but we'll explain all of them towards the end of the chapter to make sure there's no confusion.

Page 88 Section 6.1 Variable availability in VCL

6.2 VCL - vcl_hash

• Defines what is unique about a request.

• Executed directly after vcl_recv

sub vcl_hash {
 hash_data(req.url);
 if (req.http.host) {
 hash_data(req.http.host);
 } else {
 hash_data(server.ip);
 }
 return (hash);
}

vcl_hash defines the hash key to be used for a cached object. Or in other words: What separates one
cached object from the next.

One usage of vcl_hash could be to add a user-name in the cache hash to cache user-specific data.
However, be warned that caching user-data should only be done cautiously. A better alternative might be
to cache differently based on whether a user is logged in or not, but not necessarily what user it is.

The default VCL for vcl_hash adds the hostname (or IP) and the URL to the cache hash.

Note

The handling of the Vary-header is separate from the cache hash.

Section 6.2 VCL - vcl_hash Page 89

6.3 VCL - vcl_hit

• Right after an object has been found (hit) in the cache

• You can change the TTL or issue purge;

• Often used to throw out an old object

sub vcl_hit {
 return (deliver);
}

Page 90 Section 6.3 VCL - vcl_hit

6.4 VCL - vcl_miss

• Right after an object was looked up and not found in cache

• Mostly used to issue purge;

• Can also be used to modify backend request headers

sub vcl_miss {
 return (fetch);
}

The subroutines vcl_hit and vcl_miss are closely related. It's rare that you can use them, and when
you do, it's typically related to internal Varnish tricks - not debug-feedback or backend modification.

One example is using purge; to invalidate an object (more on this later), another is to rewrite a backend
request when you want the ESI fragments to get the unmodified data.

You can also modify the backend request headers in vcl_miss. This is very uncommon, as you've likely
done this in vcl_recv already. However, if you do not wish to send an X-Varnish header to the backend
server, you need to remove it in in vcl_miss and vcl_pass using unset
bereq.http.x-varnish;.

Section 6.4 VCL - vcl_miss Page 91

6.5 VCl - vcl_pass

• Run after a pass in vcl_recv OR after a lookup that returned a hitpass

• Not run after vcl_fetch.

sub vcl_pass {
 return (pass);
}

The vcl_pass function belongs in the same group as vcl_hit and vcl_miss. It is run right after
either a cache lookup or vcl_recv determined that this isn't a cached item and it's not going to be
cached.

The usefulness of vcl_pass is limited, but it typically serves as an important catch-all for features you've
implemented in vcl_hit and vcl_miss. The prime example is the PURGE method, where you want to
avoid sending a PURGE request to a backend.

Page 92 Section 6.5 VCl - vcl_pass

6.6 VCL - vcl_deliver

• Common last exit point for all (except vcl_pipe) code paths

• Often used to add and remove debug-headers

sub vcl_deliver {
 return (deliver);
}

While the vcl_deliver function is simple, it is also very useful for modifying the output of Varnish. If
you need to remove a header, or add one that isn't supposed to be stored in the cache, vcl_deliver is
the place to do it.

The main building blocks of vcl_deliver are:

resp.http.*

Headers that will be sent to the client. They can be set and unset.

resp.status

The status code (200, 404, 503, etc).

resp.response

The response message ("OK", "File not found", "Service Unavailable").

obj.hits

The number of hits a cached object has made. This can be evaluated and sued as a string to easily
reveal if a request was a cache hit or miss.

req.restarts

The number of restarts issued in VCL - 0 if none were made.

Section 6.6 VCL - vcl_deliver Page 93

6.7 VCL - vcl_error

• Used to generate content from within Varnish, without talking to a web server

• Error messages go here by default

• Other use cases: Redirecting users (301/302 Redirects)

sub vcl_error {
 set obj.http.Content-Type = "text/html; charset=utf-8";
 set obj.http.Retry-After = "5";
 synthetic {"
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
 <head>
 <title>"} + obj.status + " " + obj.response + {"</title>
 </head>
 <body>
 <h1>Error "} + obj.status + " " + obj.response + {"</h1>
 <p>"} + obj.response + {"</p>
 <h3>Guru Meditation:</h3>
 <p>XID: "} + req.xid + {"</p>
 <hr>
 <p>Varnish cache server</p>
 </body>
</html>
"};
 return (deliver);
}

Note

Note how you can use {" and "} to make multi-line strings. This is not limited to synthetic, but can
be used anywhere.

Page 94 Section 6.7 VCL - vcl_error

6.8 Example: Redirecting users with vcl_error

sub vcl_recv {
 if (req.http.host == "www.example.com") {
 set req.http.Location = "http://example.com" + req.url;
 error 750 "Permanently moved";
 }
}

sub vcl_error {
 if (obj.status == 750) {
 set obj.http.location = req.http.Location;
 set obj.status = 301;
 return (deliver);
 }
}

Redirecting with VCL is fairly easy - and fast. If you know a pattern, it's even easier.

Basic redirects in HTTP work by having the server return either 301 "Permanently moved" or 302 "Found",
with a Location header telling the web browser where to look. The 301 can affect how browser prioritize
history and how search engines treat the content. 302 are more temporary and will not affect search
engines as greatly.

The above example illustrates how you can use Varnish to generate meta-content.

Section 6.8 Example: Redirecting users with vcl_error Page 95

6.9 Exercise: Modify the error message and headers

• Make the default error message more friendly.

• Add a header saying either HIT or MISS

• "Rename" the Age header to X-Age.

Page 96
Section 6.9 Exercise: Modify the error message and

headers

6.10 Solution: Modify the error message and headers

sub vcl_error {
 synthetic "<html><body><!-- Blank page must mean it's a browser issue! --></body></html>";
 set obj.status = 200;
 return (deliver);
}

sub vcl_deliver {
 set resp.http.X-Age = resp.http.Age;
 unset resp.http.Age;

 if (obj.hits > 0) {
 set resp.http.X-Cache = "HIT";
 } else {
 set resp.http.X-Cache = "MISS";
 }
}

The solution doesn't use the "long-string" syntax that the default uses, but regular strings. This is all up to
you.

Note

It's safer to make sure a variable has a sensible value before using it to make a string. That's why
it's better to always check that obj.hits > 0 (and not just != 0) before you try using it. While
there are no known bugs with obj.hits at the moment, string-conversion has been an area
where there have been some bugs in the past when the variable to be converted had an
unexpected value (for example if you tried using obj.hits after a pass in vcl_recv).

This applies to all variables - and all languages for that matter

Section 6.10 Solution: Modify the error message and
headers Page 97

7 Cache invalidation

• Explicit invalidation of cache

• purge; removes all variants of an object from cache, freeing up memory

• set req.hash_always_miss = true; can refresh content explicitly

• ban(); can be used to invalidate objects based on regular expressions, but does not necessarily
free up memory any time soon.

• Which to use when?

• What about this ban lurker?

• obj.ttl = 0s; is obsolete.

Whenever you deal with a cache, you will eventually have to deal with the challenge of cache invalidation,
or refreshing content. There are many motives behind such a task, and Varnish addresses the problem in
several slightly different ways.

Some questions you need to ask whenever the topic of cache invalidation comes up are:

• Am I invalidating one specific object, or many?

• Do I need to free up memory, or just replace the content?

• Does it take a long time to replace the content?

• Is this a regular task, or a one-off task?

The rest of the chapter will hopefully give you the knowledge you need to know which solution to pick
when.

Page 98 Section 7 Cache invalidation

7.1 Naming confusion

• The course material uses Varnish 3-terminology if nothing else is stated.

• Varnish 3 uses the term ban and banning for what was known as purge and purging in Varnish 2.
They are the same.

• Varnish 3 has a new function called purge; that did not exist in VCL in Varnish 2.

• purge; is a much improved way of doing what was in Varnish 2 done using set obj.ttl = 0s;.

• Sorry about the confusion!

With Varnish 3, an attempt was made to clean up some terminology. Unfortunately, this might have made
things slightly worse, until people forget everything about Varnish 2.

The function called purge() in Varnish 2 is known as ban() in Varnish 3. This course material will use
that terminology, but you are likely to run across material that refers to purge() where you should read it
as ban().

On top of that, Varnish 3 introduced the purge; function that's accessible in vcl_hit and vcl_miss.
This replaces the usage of set obj.ttl = 0s;, which was common in Varnish 2, though the latter is
still valid in Varnish 3.

All the terms will be discussed in more detail, of course. This is just a heads-up about possible naming
confusion.

Section 7.1 Naming confusion Page 99

7.2 Removing a single object

• If you know exactly what to remove, use purge;.

• It must be used in both vcl_hit and vcl_miss

• Frees up memory, removes all Vary:-variants of the object.

• Leaves it to the next client to refresh the content

• Often combined with return(restart);

The purge; keyword is the simplest manner of removing content from the cache explicitly.

A resource can exist in multiple Vary:-variants. For example you could have a desktop version, a tablet
version and a smartphone version of your site and use Vary in combination with device detection to store
different variants of the same resource.

If you update your content you can use purge; to evict all variants of that content from the cache. This is
done in both vcl_hit and vcl_miss. This is typically done by letting your content management system
send a special HTTP request to Varnish. Since the content management system doesn't necessarily hit a
variant of the object that is cached, you have to issue purge; in vcl_miss too. This ensures that all
variants of that resource are evicted from cache.

The biggest down-side of using purge; is that you evict the content from cache before you know if
Varnish can fetch a new copy from a web server. If the web server is down, Varnish has no old copy of the
content.

Page 100 Section 7.2 Removing a single object

7.3 Example: purge;

acl purgers {
 "127.0.0.1";
 "192.168.0.0"/24;
}

sub vcl_recv {
 if (req.request == "PURGE") {
 if (!client.ip ~ purgers) {
 error 405 "Method not allowed";
 }
 return (lookup);
 }
}

sub vcl_hit {
 if (req.request == "PURGE") {
 purge;
 error 200 "Purged";
 }
}
sub vcl_miss {
 if (req.request == "PURGE") {
 purge;
 error 404 "Not in cache";
 }
}
sub vcl_pass {
 if (req.request == "PURGE") {
 error 502 "PURGE on a passed object";
 }
}

The PURGE example above is fairly complete and deals with a non-standard method. Using purge; will
remove all Vary:-variants of the object, unlike the older method of using obj.ttl = 0s; which had to
be issued for each variants of an object.

Note

ACLs have not been explained yet, but will be explained in detail in later chapters.

Section 7.3 Example: purge; Page 101

7.4 The lookup that always misses

• req.hash_always_miss = true; in vcl_recv will cause Varnish to look the object up in
cache, but ignore any copy it finds.

• Useful way to do a controlled refresh of a specific object, for instance if you use a script to refresh
some slowly generated content.

• Depending on Varnish-version, it may leave extra copies in the cache

• If the server is down, the old content is left untouched

Using return (pass); in vcl_recv, you will always ask a backend for content, but this will never put
it into the cache. Using purge; will remove old content, but what if the web server is down?

Using req.has_always_miss = true; tells Varnish to look the content up but, as the name
indicates, always miss. This means that Varnish will first hit vcl_miss then (presumably) fetch the
content from the web server, run vcl_fetch and (again, presumably) cache the updated copy of the
content. If the backend server is down or unresponsive, the current copy of the content is untouched and
any client that does not use req.hash_always_miss=true; will keep getting the old content as long
as this goes on.

The two use-cases for this is controlling who takes the penalty for waiting around for the updated content,
and ensuring that content isn't evicted until it's safe.

Warning

Varnish up until 3.0.2 does not do anything to evict old content after you have used
req.hash_always_miss to update it. This means that you will have multiple copies of the
content in cache. The newest copy will always be used, but if you cache your content for a long
period of time, the memory usage will gradually increase.

This is a known bug, and hopefully fixed by the time you read this warning.

Page 102 Section 7.4 The lookup that always misses

7.5 Banning

• Ban on anything

• Does not free up memory

• ban req.url ~ "/foo"

• ban req.http.host ~ "example.com" && obj.http.content-type ~ "text"

• ban.list

• In VCL: ban("req.url ~ /foo");

Banning in the context of Varnish refers to adding a ban to the ban-list. It can be done both through the
command line interface, and through VCL, and the syntax is almost the same.

A ban is one or more statements in VCL-like syntax that will be tested against objects in the cache when
they are looked up in the cache hash. A ban statement might be "the url starts with /sport" or "the object
has a Server-header matching lighttpd".

Each object in the cache always points to an entry on the ban-list. This is the entry that they were last
checked against. Whenever Varnish retrieves something from the cache, it checks if the objects pointer to
the ban list is point to the top of the list. If it does not point to the top of the list, it will test the object against
all new entries on the ban list and, if the object did not match any of them, update the pointer of the ban
list.

There are pros and cons to this approach. The most obvious con is that no memory is freed: Objects are
only tested once a client asks for them. A second con is that the ban list can get fairly large if there are
objects in the cache that are rarely, if ever, accessed. To remedy this, Varnish tries to remove duplicate
bans by marking them as "gone" (indicated by a G on the ban list). Gone bans are left on the list because
an object is pointing to them, but are never again tested against, as there is a newer ban that superseeds
it.

The biggest pro of the ban-list approach is that Varnish can add bans to the ban-list in constant time. Even
if you have three million objects in your cache, adding a ban is instantaneous. The load is spread over
time as the objects are requested, and they will never need to be tested if they expire first.

Tip

If the cache is completely empty, bans you add will not show up in the ban list. This can often
happen when testing your VCL code during debugging.

Section 7.5 Banning Page 103

7.6 VCL contexts when adding bans

• The context is that of the client present when testing, not the client that initiated the request that
resulted in the fetch from the backend.

• In VCL, there is also the context of the client adding the item to the ban list. This is the context used
when no quotation marks are present.

ban("req.url == " + req.http.x-url);

• req.url from the future client that will trigger the test against the object is used.

• req.http.x-url is the x-url header of the client that puts the ban on the ban list.

One of the typical examples of purging reads ban("req.url == " + req.url), which looks fairly
strange. The important thing to remember is that in VCL, you are essentially just creating one big string.

Tip

To avoid confusion in VCL, keep as much as possible within quotation marks, then verify that it
works the way you planned by reviewing the ban list through the cli, using ban.list.

Page 104 Section 7.6 VCL contexts when adding bans

7.7 Smart bans

• When Varnish tests bans, any req.*-reference has to come from whatever client triggered the test.

• A "ban lurker" thread runs in the background to test bans on less accessed objects

• The ban lurker has no req.*-structure. It has no URL or Hostname.

• Smart bans are bans that only references obj.*

• Store the URL and Hostname on the object

• set beresp.http.x-url = req.url;

• set beresp.http.x-host = req.http.host;

• ban obj.http.x-url ~ /something/.*

Varnish now has a ban lurker thread, which will test old objects against bans periodically, without a client.
For it to work, your bans can not refer to anything starting with req, as the ban lurker doesn't have any
request data structure.

If you wish to ban on url, it can be a good idea to store the URL to the object, in vcl_fetch:

set beresp.http.x-url = req.url;

Then use that instead of req.url in your bans, in vcl_recv:

ban("obj.http.x-url == " + req.url);

This will allow Varnish to test the bans against less frequently accessed objects, so they do not linger in
your cache just because no client asks for them just to discover they have been banned.

Section 7.7 Smart bans Page 105

7.8 ban() or purge;?

• Banning is more flexible than purge;, but also slightly more complex

• Banning can be done from CLI and VCL, while purge; is only possible in VCL.

• Smart bans require that your VCL stores req.url (or any other fields you intend to ban on) ahead
of time, even though banning on req.url directly will still work.

• Banning is not designed to free up memory, but smart bans using the ban lurker will still do this.

There is rarely a need to pick either bans or purges in Varnish, as you can have both. Some guidelines for
selection, though:

• Any frequent automated or semi-automated cache invalidation will likely require VCL changes for the
best effect, be it purge; or setting up smart bans.

• If you are invalidating more than one item at a time, you will either need a whole list, or need to use
bans.

• If it takes a long time to pull content into Varnish, it's often a good idea to use
req.hash_always_miss to control which client ends up waiting for the new copy. E.g: a script you
control.

Page 106 Section 7.8 ban() or purge;?

7.9 Exercise: Write a VCL for bans and purges
Write a VCL implementing a PURGE and BAN request method, which issues purge; and ban();
respectively. The ban method should use the request headers req.http.X-Ban-url and
req.http.X-Ban-host respectively. The VCL should use smart bans.

Do you get any artifacts from using smart bans, and can you avoid them?

To build further on this, you can also have a REFRESH method that fetches new content, using
req.hash_always_miss.

To test this exercise you can use lwp-request. Example commands:

lwp-request -f -m PURGE http://localhost/testpage
lwp-request -f -m BAN -H 'X-Ban-Url: .*html$' -H 'X-Ban-Host: .*\.example\.com' http://localhost/
lwp-request -f -m REFRESH http://localhost/testpage

You may want to add -USsed to those commands to see the request and response headers.

Section 7.9 Exercise: Write a VCL for bans and purges Page 107

7.10 Solution: Write a VCL for bans and purges

sub vcl_recv {
 if (req.request == "PURGE") {
 return (lookup);
 }
 if (req.request == "BAN") {
 ban("obj.http.x-url ~ " + req.http.x-ban-url +
 " && obj.http.x-host ~ " + req.http.x-ban-host);
 error 200 "Banned";
 }
 if (req.request == "REFRESH") {
 set req.request = "GET";
 set req.hash_always_miss = true;
 }
}

sub vcl_hit {
 if (req.request == "PURGE") {
 purge;
 error 200 "Purged";
 }
}

sub vcl_miss {
 if (req.request == "PURGE") {
 purge;
 error 404 "Not in cache";
 }
}

sub vcl_fetch {
 set beresp.http.x-url = req.url;
 set beresp.http.x-host = req.http.host;
}

sub vcl_deliver {
 unset resp.http.x-url;
 unset resp.http.x-host;
}

Page 108 Section 7.10 Solution: Write a VCL for bans and purges

7.11 Exercise : PURGE an article from the backend

• Send a PURGE request to Varnish from your backend server after an article is published. The
publication part will be simulated.

• The result should be that the article must be purged in Varnish.

Now you know that purging can be as easy as sending a specific HTTP request In order to help you have
access to the file article.php which fakes an article. It is recommended to create a new page called
purgearticle.php.

Section 7.11 Exercise : PURGE an article from the
backend Page 109

7.12 Solution : PURGE an article from the backend
article.php

<?php
header("Cache-Control: public, must-revalidate, max-age=3600, s-maxage=3600");

$date = new DateTime();
$now = $date->format(DateTime::RFC2822);
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head></head>
 <body>
 <h1>This is an article, cached for 1 hour</h1>

 <h2>Now is <?php echo $now; ?></h2>
 <a href="<?=$_SERVER['PHP_SELF']?>">Refresh this page
 </body>
</html>

Page 110
Section 7.12 Solution : PURGE an article from the

backend

purgearticle.php

<?php
header('Content-Type: text/plain');
header('Cache-Control: max-age=0');
$hostname = 'localhost';
$port = 80;
$URL = '/article.php';
$debug = true;

print "Updating the article in the database ...\n";
purgeURL($hostname, $port, $URL, $debug);

function purgeURL($hostname, $port, $purgeURL, $debug)
{
 $finalURL = sprintf(
 "http://%s:%d%s", $hostname, $port, $purgeURL
);

 print("Purging ${finalURL}\n");

 $curlOptionList = array(
 CURLOPT_RETURNTRANSFER => true,
 CURLOPT_CUSTOMREQUEST => 'PURGE',
 CURLOPT_HEADER => true ,
 CURLOPT_NOBODY => true,
 CURLOPT_URL => $finalURL,
 CURLOPT_CONNECTTIMEOUT_MS => 2000
);

 $fd = false;
 if($debug == true) {
 print "\n---- Curl debug -----\n";
 $fd = fopen("php://output", 'w+');
 $curlOptionList[CURLOPT_VERBOSE] = true;
 $curlOptionList[CURLOPT_STDERR] = $fd;
 }

 $curlHandler = curl_init();
 curl_setopt_array($curlHandler, $curlOptionList);
 curl_exec($curlHandler);
 curl_close($curlHandler);
 if($fd !== false) {
 fclose($fd);
 }
}
?>

Section 7.12 Solution : PURGE an article from the
backend Page 111

default.vcl

backend default { .host = "localhost"; .port = "80"; }
acl purgers { "127.0.0.1"; }
sub vcl_recv {
 if (req.request == "PURGE") {
 if (!client.ip ~ purgers) {
 error 405 "Not allowed.";
 }
 return (lookup);
 }
}
sub vcl_hit {
 if (req.request == "PURGE") {
 purge;
 error 200 "Purged.";
 }
}
sub vcl_miss {
 if (req.request == "PURGE") {
 purge;
 error 200 "Purged.";
 }
}

Page 112
Section 7.12 Solution : PURGE an article from the

backend

8 Saving a request
This chapter is for the system administration course only

• Grace and grace mode

• Health checks

• Saint mode

• return (restart);

• Directors

• Using ACLs

Varnish has several mechanisms for recovering from problematic situations. It can retry a request to a
different server, it can perform health checks, use an otherwise expired object and more.

This chapter discusses how these features interact with each other and how you can combine them to
make your Varnish setup far more robust.

Section 8 Saving a request Page 113

8.1 Core grace mechanisms

• A graced object is an object that has expired, but is still kept in cache

• Grace mode is when Varnish uses a graced object

• There is more than one way Varnish can end up using a graced object.

• req.grace defines how long overdue an object can be for Varnish to still consider it for grace
mode.

• beresp.grace defines how long past the beresp.ttl-time Varnish will keep an object

• req.grace is often modified in vcl_recv based on the state of the backend.

When Varnish is in grace mode, it uses an object that has already expired as far as the TTL is
concerned. There are several reasons this might happen, one of them being if a backend is marked
as bad by a health probe.

For Varnish to be able to use a graced object, two things need to

happen:

• The object needs to still be kept around. This is affected by beresp.grace in vcl_fetch.

• The VCL has to allow Varnish to use an object as overdue as the one kept around. This is
affected by req.grace in vcl_recv.

When setting up grace, you will need to modify both vcl_recv and vcl_fetch to use grace
effectively. The typical way to use grace is to store an object for several hours past its TTL, but only
use it a few seconds after the TTL, except if the backend is sick. We will look more at health checks
in a moment, but for now, the following VCL can illustrate a normal setup:

sub vcl_recv {
 if (req.backend.healthy) {
 set req.grace = 30s;
 } else {
 set req.grace = 24h;
 }
}

sub vcl_fetch {
 set beresp.grace = 24h;
}

Page 114 Section 8.1 Core grace mechanisms

8.2 req.grace and beresp.grace

set beresp.ttl=1m;
set req.grace = 30s;
set beresp.grace = 1h;

• 50s: Normal delivery

• 62s: Normal cache miss, but grace mode possible

• 80s: Normal cache miss, but grace mode possible

• 92s: Normal cache miss, grace mode possible but not allowed

• 3660s: (1h+1m) Object is removed from cache

In this time-line example, everything except the first normal delivery is assuming the object is never
refreshed. If a cache miss happens at 62s and the object is refreshed, then 18 seconds later (80s) a
request for the same resource would of course just hit the new 18 second old object.

The flip-side to this time line is if you set req.grace to 1h but leave beresp.grace to 30s instead.
Even if grace is allowed for up to an hour, it's not possible since the object will be removed long before
that.

The lesson to learn from this is simple: There is no point in setting req.grace to a value higher than
beresp.grace, but there could be a point in setting beresp.grace higher than req.grace.

Tip

You can use set req.grace = 0s; to ensure that editorial staff doesn't get older objects
(assuming they also don't hit the cache). The obvious downside of this is that you disable all grace
functionality for these users, regardless of the reason.

Section 8.2 req.grace and beresp.grace Page 115

8.3 When can grace happen

• A request is already pending for some specific content (deliver old content as long as fetching new
content is in progress).

• No healthy backend is available

• You need health probes or saint mode for Varnish to consider the backend as unhealthy.

The original purpose of grace mode was to avoid piling up clients whenever a popular object expired from
cache. So as long as a client is waiting for the new content, Varnish will prefer delivering graced objects
over queuing up more clients to wait for this new content.

This is why setting req.grace to a low value is a good performance gain. It ensures that no client will
get too old content, but as long as Varnish has a copy of the content and is in the progress of updating it,
the old content will be sent. You can disable this entirely by setting req.grace=0s, and still use graced
objects for unhealthy backends.

Page 116 Section 8.3 When can grace happen

8.4 Exercise: Grace

1. Reuse the CGI script in /usr/lib/cgi-bin/test.cgi, but increase the sleep time and allow it to cache:

#! /bin/sh
sleep 15
echo "Content-type: text/plain"
echo "Cache-control: max-age=20"
echo
echo "Hello world"
date

2. Make it executable

3. Test that it works outside of Varnish

4. Set up beresp.grace and req.grace to 10s in VCL

5. Fire up a single request to warm the cache, it will take 15 seconds.

6. Fire up two requests roughly in parallel

7. Repeat until you can see how grace affects multiple clients

With this exercise, you should see that as long as the content is within the regular TTL, there is no
difference. Once the TTL expires, the first client that asks for the content should be stuck for 15 seconds,
while the second client should get the graced copy.

Also try setting req.grace to 0s and 10s while leaving beresp.grace intact, then do the opposite.

Bonus: What happens to the Age-header when it takes 15 seconds to generate a page?

Section 8.4 Exercise: Grace Page 117

8.5 Health checks

• Poke your web server every N seconds

• Affects backend selection

• req.backend.healthy

• Varnish needs at least threshold amount of good probes within a set of the last window probes.
Where threshold and window are parameters.

• Set using .probe

• varnishlog: Backend_health

• varnishadm: debug.health

backend one {
 .host = "example.com";
 .probe = {
 .url = "/healthtest";
 .interval = 3s;
 .window = 5;
 .threshold = 2;
 }
}

You can define a health check for each backend, which will cause Varnish to probe a URL every few
seconds. Normally, it will take more than one failed request before Varnish stops using a specific backend
server.

The above example will cause Varnish to send a request to http://example.com/healthtest every 3
seconds. When deciding whether to use a server or not, it will look at the last 5 probes it has sent and
require that at least 3 of them were good.

You also have an important variable called .initial, which defaults to the same value as .threshold. It
defines how many probes Varnish should pretend are good when it first starts up. Before .initial was
added, Varnish needed enough time to probe the Web server and gather good probes before it was able
to start functioning after boot.

debug.health
200 545
Backend foo is Healthy
Current states good: 8 threshold: 5 window: 8
Average responsetime of good probes: 0.355237
Oldest Newest
==
--4444444444 Good IPv4
--XXXXXXXXXX Good Xmit
--RRRRRRRRRR Good Recv
---HHHHHHHHHHHHHHH Happy

Page 118 Section 8.5 Health checks

http://example.com/healthtest

The above shows the output of debug.health - the same data is also available in the more concise
Debug_health tag of varnishlog.

Good IPv4 indicates that the IP was available for routing and that Varnish was able to connect over IPv4.
Good Xmit indicates that Varnish was able to transmit data. Good Recv indicates that Varnish got a valid
reply. Happy indicates that the reply was a 200 OK.

Note

Varnish does NOT send a Host header with health checks. If you need that, you can define the
entire request using .request instead of .url.

backend one {
 .host = "example.com";
 .probe = {
 .request =
 "GET / HTTP/1.1"
 "Host: www.foo.bar"
 "Connection: close";
 }
}

Section 8.5 Health checks Page 119

8.6 Health checks and grace

• If a backend is marked as sick, grace mode is attempted

• You can use req.backend.healthy to alter req.grace when a backend is sick to allow
Varnish to use even older content, if available.

When Varnish has no healthy backend available, it will attempt to use a graced copy of the object it is
looking for. But all the rules you specify in VCL still apply.

Since you have req.backend.healthy available to you, you can use this to optionally increase
req.grace just for requests to unhealthy backends.

Page 120 Section 8.6 Health checks and grace

8.7 Directors

• Contains 1 or more backends

• All backends must be known

• Multiple selection methods

• random, round-robin, hash, client and dns

backend one {
 .host = "localhost";
 .port = "80";
}

backend two {
 .host = "127.0.0.1";
 .port = "81";
}

director localhosts round-robin {
 { .backend = one; }
 { .backend = two; }
 { .backend = { .host = "localhost"; .port = "82"; } }
}

sub vcl_recv {
 set req.backend = localhosts;
}

Backend directors, usually just called directors, provide logical groupings of similar web servers. There are
several different directors available, but they all share the same basic properties.

First of all, anywhere in VCL where you can refer to a backend, you can also refer to a director.

All directors also allow you to re-use previously defined backends, or define "anonymous" backends within
the director definition. If a backend is defined explicitly and referred to both directly and from a director,
Varnish will correctly record data such as number of connections (i.e.: max connections limiting) and
saintmode thresholds. Defining an anonymous backend within a director will still give you all the normal
properties of a backend.

And a director must have a name.

The simplest directors available are the round-robin director and the random director. The round-robin
director takes no additional arguments - only the backends. It will pick the first backend for the first
request, then the second backend for the second request, and so on, and start again from the top. If a
health probe has marked a backend as sick, the round-robin director will skip it.

The random director picks a backend randomly. It has one per-backend parameter called weight, which
provides a mechanism for balancing the traffic to the backends. It also provides a director-wide parameter
called retries - it will try this many times to find a healthy backend.

Section 8.7 Directors Page 121

The above example will result in twice as much traffic to localhost.

8.7.1 Client and hash directors
The client and hash directors are both special variants of the random director. Instead of a random
number, the client director uses the client.identity. The client.identity variable defaults to
the client IP, but can be changed in VCL. The same client will be directed to the same backend, assuming
that the client.identity is the same for all requests.

Similarly, the hash director uses the hash data, which means that the same URL will go to the same web
server every time. This is most relevant for multi-tiered caches.

For both the client and the hash director, the director will pick the next backend available if the preferred
one is unhealthy.

8.7.2 The DNS director
The DNS director uses the Host header sent by a client to find a backend among a list of possibles. This
allows dynamic scaling and changing of web server pools without modifying Varnish' configuration, but
instead just waiting for Varnish to pick up on the DNS changes.

As the DNS director is perhaps the most complex, some extra explanation might be useful. Consider the
following example VCL.

director mydirector dns {
 .list = {
 .port = "81";
 "192.168.0.0"/24;
 }
 .ttl = 5m;
 .suffix = "internal.example.net";
}

sub vcl_recv {
 set req.backend = mydirector;
}

It defines 255 backends, all in the 192.168.0.0/24 range. The DNS director can also use the traditional
(non-list) format of defining backends, and most options are supported in .list, as long as they are
specified before the relevant backends.

The TTL specified is for the DNS cache. In our example, the mydirector director will cache the DNS
lookups for 5 minutes. When a client asks for www.example.org, Varnish will look up
www.example.org.internal.example.net, and if it resolves to something, the DNS director will
check if on of the backends in the 192.168.0.0./24 range matches, then use that.

Page 122 Section 8.7.1 Client and hash directors

8.8 Demo: Health probes and grace

Section 8.8 Demo: Health probes and grace Page 123

8.9 Saint mode

• Saint mode marks an object as sick for a specific backend for a period of time

• The rest of Varnish just sees a sick backend, be it for grace or backend selection

• Other content from the same backend can still be accessed

• ... unless more than a set amount of objects are added to the saintmode black list for a specific
backend, then the entire backend is considered sick.

• Normal to restart after setting beresp.saintmode = 20s; in vcl_fetch

Saint mode is meant to complement your regular health checks. Some times you just can't spot a problem
in a simple health probe, but it might be obvious in vcl_fetch.

An example could be a thumbnail generator. When it fails it might return "200 OK", but no data. You can
spot that the Length-header is 0 in vcl_fetch, but the health probes might not be able to pick up on this.

In this situation you can set beresp.saintmode = 20s;, and Varnish will not attempt to access that
object (aka: URL) from that specific backend for the next 20 seconds. If you restart and attempt the same
request again, Varnish will either pick a different backend if one is available, or try to use a graced object,
or finally deliver an error message.

If you have more than 10 [objects] (default) objects black listed for a specific backend, the entire backend
is considered sick. The rationale is that if 10 URLs already failed, there's probably no reason to try an
11th.

There is no need to worry about recovering. The object will only be on the saint list for as long as you
specify, regardless of whether the threshold is reached or not.

Use saint mode to complement your health checks. They are meant to either help Varnish "fail fast" for a
backend that has failed, until the health probes can take over, or catch errors that are not possible to spot
with the health checks.

As such, it's advised to keep the saint period short. Typical suggestions are 20 seconds, 30 seconds, etc.

Page 124 Section 8.9 Saint mode

8.10 Restart in VCL

• Start the VCL processing again from the top of vcl_recv.

• Any changes made are kept.

• Parameter max_restarts safe guards against infinite loops

• req.restarts counts the number of restarts

sub vcl_fetch {
 if (req.restarts == 0 &&
 req.request == "GET" &&
 beresp.status == 301) {
 set beresp.http.location = regsub(beresp.http.location,"^http://","");
 set req.http.host = regsub(beresp.http.location,"/.*$","");
 set req.url = regsub(beresp.http.location,"[^/]*","");
 return (restart);
 }
}

Restarts in VCL can be used everywhere.

They allow you to re-run the VCL state engine with different variables. The above example simply
executes a redirect without going through the client. An other example is using it in combination with
PURGE and rewriting so the script that issues PURGE will also refresh the content.

Yet another example is to combine it with saint mode.

Note

Varnish version 2.1.5 is the first version where return(restart); is valid in vcl_deliver,
making it available everywhere.

Section 8.10 Restart in VCL Page 125

8.11 Backend properties

• Most properties are optional

backend default {
 .host = "localhost";
 .port = "80";
 .connect_timeout = 0.5s;
 .between_bytes_timeout = 5s;
 .saintmode_threshold = 20;
 .first_byte_timeout = 20s;
 .max_connections = 50;
}

All the backend-specific timers that are available as parameters can also be overridden in the VCL on a
backend-specific level.

While the timeouts have already been discussed, there are some other notable parameters.

The saintmode threshold defines how many items can be blacklisted by saint mode before the entire
backend is considered sick. Saint mode will be discussed in more detail.

If your backend is struggling, it might be advantageous to set max_connections so only a set number
of simultaneous connections will be issued to a specific backend.

Tip

Varnish only accepts hostnames for backend servers that resolve to a maximum of one IPv4
address and one IPv6 address. The parameter prefer_ipv6 defines which one Varnish will
prefer.

Page 126 Section 8.11 Backend properties

8.12 Example: Evil backend hack
You can not use saintmode in vcl_error and health probes can be slow to pick up on trouble. So, in
order to act on a failing backend right away you can use the supplied hack to force delivery of graced
object right away.

You can use a fake backend that's always sick to force a grace copy. This is considered a rather dirty
hack that works.

backend normal {
 .host = "localhost";
 .probe = { .url = "/"; }
}

backend fail {
 .host = "localhost";
 .port = "21121";
 .probe = { .url = "/asfasfasf"; .initial = 0; .interval = 1d; }
}

sub vcl_recv {
 if (req.restarts == 0) {
 set req.backend = normal;
 } else {
 set req.backend = fail;
 }

 if (req.backend.healthy) {
 set req.grace = 30s;
 } else {
 set req.grace = 24h;
 }
}

sub vcl_fetch {
 set beresp.grace = 24h;
}

sub vcl_error {
 if (req.restarts == 0) {
 return (restart);
 }
}

Section 8.12 Example: Evil backend hack Page 127

8.13 Access Control Lists

• An ACL is a list of IPs or IP ranges.

• Compare with client.ip or server.ip

acl management {
 "172.16.0.0"/16;
}

acl sysadmins {
 "192.168.0.0"/16;
 ! "192.168.0.1";
}

sub vcl_recv {
 if (client.ip ~ management) {
 set req.url = regsub(req.url, "^","/proper-stuff");
 } elsif (client.ip ~ sysadmins) {
 set req.url = regsub(req.url, "^","/cool-stuff");
 }
}

ACLs are fairly simple. A single IP is listed as "192.168.1.2", and to turn it into an IP-range, add the
/24 outside of the quotation marks ("192.168.1.0"/24). To exclude an IP or range from an ACL,
precede it with an exclamation mark - that way you can include all the IPs in a range except the gateway,
for example.

ACLs can be used for anything. Some people have even used ACLs to differantiate how their Varnish
servers behaves (e.g.: A single VCL for different Varnish servers - but it evaluates server.ip to see where
it really is).

Typical use cases are for PURGE requests, bans or avoiding the cache entirely.

Page 128 Section 8.13 Access Control Lists

8.14 Exercise: Combine PURGE and restart

• Re-write the PURGE example to also issue a restart

• The result should be that a PURGE both removes the content and fetches a new copy from the
backend.

Section 8.14 Exercise: Combine PURGE and restart Page 129

Page 130 Section 8.14 Exercise: Combine PURGE and restart

8.15 Solution: Combine PURGE and restart

acl purgers {
 "127.0.0.1";
 "192.168.0.0"/24;
}

sub vcl_recv {
 if (req.restarts == 0) {
 unset req.http.X-purger;
 }
 if (req.request == "PURGE") {
 if (!client.ip ~ purgers) {
 error 405 "Method not allowed";
 }
 return (lookup);
 }
}

sub vcl_hit {
 if (req.request == "PURGE") {
 purge;
 set req.request = "GET";
 set req.http.X-purger = "Purged";
 error 800 "restart";
 }
}

sub vcl_miss {
 if (req.request == "PURGE") {
 purge;
 set req.request = "GET";
 set req.http.X-purger = "Purged-possibly";
 error 800 "restart"; # cant restart in miss, yet. go via error
 }
}

sub vcl_error {
 if (obj.status == 800) {
 return(restart);
 }
}

sub vcl_pass {
 if (req.request == "PURGE") {
 error 502 "PURGE on a passed object";
 }
}

Section 8.15 Solution: Combine PURGE and restart Page 131

sub vcl_deliver {
 if (req.http.X-purger) {
 set resp.http.X-purger = req.http.X-purger;
 }
}

Note

Whenever you are using req.http to store an internal variable, you should get used to unsetting
it in vcl_recv on the first run. Otherwise a client could supply it directly. In this situation, the
outcome wouldn't be harmful, but it's a good habit to establish.

Page 132 Section 8.15 Solution: Combine PURGE and restart

9 Content Composition
This chapter is for the webdeveloper course only

You now know almost all you need to know to adapt your site to work well with Varnish. In this chapter, we
will look closer at how to glue your content together. We will look at:

• AJAX and masquerading AJAX requests through Varnish.

• Cookies and how you can work with them.

• Edge Side Includes (ESI) and how you can compose a single client-visible page out of multiple
objects.

• Combining ESI and Cookies.

While you may or may not be comfortable in PHP, it should be easy to re-use the same ideas in other
languages after you've finished this chapter.

Section 9 Content Composition Page 133

9.1 A typical site
Most websites follow a pattern, with easily distinguishable parts:

• A front page.

• Articles or sub-pages.

• A login-box or "home bar".

• Static elements, like CSS, JavaScript and graphics.

To truly utilize Varnish to its full potential, you have to start by mentally organizing your own site. Ask
yourself this:

• What makes this page unique, and how can I let caches know.

Beginning with the static elements should be easy. You already know what you need to know to handle
those.

An other easy option is to only cache content for users that are not logged in. For news-papers, that's
probably enough. For a web-shop, that's not going to cut it.

But even for a web-shop, you can frequently re-use objects. If you can isolate the user-specific bits, like
the shopping cart, you can cache the rest. You could even cache the shopping cart, if you told Varnish
when it changed.

The most important lessons, though, is to start with what you know.

Page 134 Section 9.1 A typical site

9.2 Cookies
Cookies are frequently used to identify unique users, or user-choices. They can be used for anything from
identifying a user-session in a web-shop to opting out of a sites mobile-version. There are three ways
cookies can be handled:

• The client can (and will) send a Cookie request-header containing all cookies that matches that site
and path.

• The server can set a cookie by returning a Set-Cookie response-header.

• You can modify cookies through JavaScript.

We will not look too closely at the JavaScript-method, but it is often necessary to go down that road for
user-specific content. We'll see why soon enough.

For Varnish, there are several ways to handle Cookies.

Section 9.2 Cookies Page 135

9.3 Vary and Cookies

• The Vary-header can be used to let caches cache content that is based on the value of cookies.

• Cookies are widely used

• ... but almost no-one sends Vary: Cookie for content that does, indeed, vary based on the
Cookie.

• Thus: Varnish does not cache when cookies are involved, by default.

There is a good chance that you never knew what the Vary-header did before you begun this course. You
are not alone. However, many people know how to store and retrieve cookies.

If Varnish' default VCL only obeyed the HTTP standard, you would be able to cache content freely,
regardless of the cookies a client sent. If the server generated different pages based on the
cookie-header, it would signal that by sending a Vary response-header with Cookie in it. Sadly, that's not
the case.

To avoid cache collisions and littering the cache with large amount of copies of the same content, Varnish
does not cache a page if the Cookie request-header or Set-Cookie response header is present.

You can force it, by issuing return (lookup); in vcl_recv, and similar actions for Set-Cookie, and
you'll most likely have to. But be careful, or you end up giving a page generated based on a cookie to the
wrong person.

Page 136 Section 9.3 Vary and Cookies

9.4 Best practices for cookies

• Remove all cookies you know you do not need, then cache if none are left.

• Use URL schemes that let you easily determine if a page needs a cookie or not. E.g:

• /common/ - strip all cookies.

• /user/ - Leave user-cookies.

• /voucher/ - Only leave the voucher-cookie.

• etc.

• Once you have a URL scheme that works, add the req.http.cookie to the cache hash in vcl_hash:
hash_data(req.http.cookie);.

• Never cache a Set-Cookie header. Either remove the header before caching or don't cache the
object at all.

• Avoid using return (deliver); more than once in vcl_fetch. Instead, finish up with something
similar to:

if (beresp.ttl > 0s) {
 unset beresp.http.set-cookie;
}

This will ensure that all cached pages are stripped of set-cookie.

A golden rule through all of this is: It's far better to either NOT cache or cache multiple copies of the same
content for each user than it is to deliver the wrong content to the wrong person.

Your worst-case scenario should be a broken cache and overloaded web servers, not a compromised
user-account and a lawsuit.

Section 9.4 Best practices for cookies Page 137

9.5 Exercise: Compare Vary and hash_data
Both a Vary: Cookie response-header and hash_data(req.http.cookie); will create separate
objects in the cache. This exercise is all about Vary- and hash-dynamics.

1. Use the purge; code from previous chapters.

2. Test with curl --cookie "user=John" http://localhost/cookies.php

3. Force Varnish to cache, despite the client sending a Cookie header

4. Change the cookie, and see if you get a new value.

5. Make cookies.php send a Vary: Cookie header, then try changing the cookie again.

6. Try to PURGE. Check if it affects all, none or just one of the objects in cache (e.g: change the
cookie-value and see if PURGE has purged all of them).

7. Remove beresp.http.Vary in vcl_fetch and see if Varnish will still honor the Vary-header.

8. Add hash_data(req.http.cookie); in vcl_hash. Check how multiple cookie-values will give
individually-cached pages.

9. Try PURGE now that you use hash_data() instead of Vary.

Once you've done this exercise, you should have a very good idea on how both Vary and
hash_data(); works. We only looked at it for the Cookie header, but the same rules would apply to any
other header too.

Page 138 Section 9.5 Exercise: Compare Vary and hash_data

9.6 Edge Side Includes

• What is ESI

• How to use ESI

• Testing ESI without Varnish

Edge Side Includes or ESI is a small markup language for dynamic web content assembly at the reverse
proxy level. The reverse proxy analyses the HTML code, parses ESI specific markup and assembles the
final result before flushing it to the client.

With ESI, Varnish can be used not only to deliver objects, but to glue them together. The most typical use
case for ESI is a news article with a "most recent news" box at the side. The article itself is most likely
written once and possibly never changed, and can be cached for a long time. The box at the side with
"most recent news", however, will change frequently. With ESI, the article can include a "most recent
news" box with a different TTL.

Varnish would then first fetch the news article from a web server, then parse it for ESI content, see the
<esi:include src="/top.html"> item, then fetch /top.html as if it was a normal object, either finding
it already cached or getting it from a web server and inserting it into cache. The TTL of /top.html can be 5
minutes while the article is cached for two days. Varnish will know that it has to glue the page together
from two different objects when it sends it, and thus it will update the parts independently and always use
the most updated version.

Section 9.6 Edge Side Includes Page 139

9.7 Basic ESI usage
Enabling ESI in Varnish is simple enough:

sub vcl_fetch {
 set beresp.do_esi = true;
}

To include a page in another, the <esi:include> tag is used:

<esi:include src="/url" />

You can also strip cookies for the top-element of an ESI page, but leave them for the sub-page. This is
done in vcl_recv.

Varnish only supports the three following tags:

• <esi:include> : calls the page defined in the "src" attribute and inserts it in the page where the
tag has been placed.

• <esi:remove> : removes any code inside this opening and closing tag.

• <!--esi ``(content) -->``: Leaves (content) unparsed. E.g, the following will not perform
substitution for the <esi:include... tag:

<!--esi
 An esi tag looks like: <esi:include src="example">
-->

Note

By default, Varnish refuses to parse content for ESI if it does not look like XML. That means that it
has to start with a <-sign. You should be able to see ESI parse errors both in varnishstat and
varnishlog, though you may have to look closely.

Page 140 Section 9.7 Basic ESI usage

9.8 Exercise: Enable ESI and Cookies
Use the esi-top.php and esi-user.php-files to test ESI.

1. Visit the esi-top.php-page and observe that the ESI-markup is clearly visible.

2. Enable ESI in Varnish and re-test.

3. Strip all cookies from esi-top.php and make it cache.

4. Let the user-page cache too. It emits Vary: Cookie, but might need some help.

Try using return(lookup) in vcl_recv as little as you can, and return(deliver); in vcl_fetch as
little as you can. This is a general rule, that will train you to make safer Varnish setups.

During the exercise, make sure you understand all the cache mechanisms at play. You can also try
removing the Vary: Cookie-header from esi-user.php and test.

You may also want to try PURGE. You will have to purge each of the objects: Purging just /esi-top.php will
not automatically purge /esi-user.php.

Section 9.8 Exercise: Enable ESI and Cookies Page 141

9.9 Testing ESI without Varnish

• You can test ESI Using JavaScript to fill in the blanks

During the development period you might not need Varnish all the time as it might make you less
comfortable when adding a particular feature. There is a solution based on JavaScript that you could use
to interpret ESI syntax without having to use Varnish at all. You can download the library at the following
URL:

• http://www.catalystframework.org/calendar/static/2008/esi/ESI_Parser.tar.gz

Once downloaded, extract it in your code base, include esiparser.js and include the following JavaScript
code to trigger the ESI parser:

$(document).ready(function () { do_esi_parsing(document); });

Page 142 Section 9.9 Testing ESI without Varnish

http://www.catalystframework.org/calendar/static/2008/esi/ESI_Parser.tar.gz

9.10 Masquerading AJAX requests

What works What does not work

With AJAX it is not possible to send requests to a request across another domain. This is a security
restriction imposed by browsers. This issue can be easily solved by using Varnish and VCL.

Section 9.10 Masquerading AJAX requests Page 143

9.11 Exercise : write a VCL that masquerades XHR calls
By using the ajax.html page provided write a VCL that masquerades Ajax requests.

Page 144
Section 9.11 Exercise : write a VCL that masquerades

XHR calls

9.12 Solution : write a VCL that masquerades XHR calls
ajax.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/jquery/1.4/jquery.min.js">
 </script>
 <script type="text/javascript">
 function getNonMasqueraded()
 {
 $("#result").load("http://www.google.com/robots.txt");
 }

 function getMasqueraded()
 {
 $("#result").load("/masq/robots.txt");
 }
 </script>
 </head>
 <body>
 <h1>Cross-domain Ajax</h1>

 Test a non masqueraded cross-domain request
 Test a masqueraded cross-domain request

 <h1>Result</h1>
 <div id="result"></div>
 </body>
</html>

Section 9.12 Solution : write a VCL that masquerades
XHR calls Page 145

default.vcl

backend google {
 .host = "209.85.147.106";
 .port = "80";
}

sub vcl_fetch {
 if (req.url ~ "^/masq") {
 set req.backend = google;
 set req.http.host = "www.google.com";
 set req.url = regsub(req.url, "^/masq", "");
 remove req.http.Cookie;
 return(deliver);
 }
 /* [...] */
}

Page 146
Section 9.12 Solution : write a VCL that masquerades

XHR calls

10 Finishing words

Section 10 Finishing words Page 147

10.1 Varnish 2.1 to 3.0
Varnish 3.0, in addition to new features, also changed several aspects of VCL and parameters.

Varnish 2.1 Varnish 3.0

vcl_fetch: return (pass); vcl_fetch: return (hit_for_pass);

vcl_recv: return (pass); vcl_recv: return (pass);

purge(....); ban(.....);

C{ VRT_Nuke(...); }C purge;

set req.url = "/test" req.url; set req.url = "/test" + req.url;

log "something"; import std; std.log("something");

"%2520" is literal %20 "%20" - no more %-escapes

set req.hash += req.url hash_data(req.url);

esi; set beresp.do_esi = true;

thread_pool_max does not depend on
thread_pools, but thread_pool_min does.

Both thread_pool_max and thread_pool_min are per
thread pool

thread_pool_max=200 and thread_pools=8
means max 200 total threads.

thread_pool_max=200 and thread_pools=8 means
max 1600 total threads

Page 148 Section 10.1 Varnish 2.1 to 3.0

10.2 Resources

• RFC 2616

Community driven:

• http://varnish-cache.org

• http://varnish-cache.org/docs/

• http://repo.varnish-cache.org/

• http://varnish-cache.org/wiki/VCLExamples

• Public mailing lists: http://varnish-cache.org/wiki/MailingLists

• Public IRC channel: #varnish at irc.linpro.no

Commercial:

• http://planet.varnish-cache.org/

• http://www.varnish-software.com

• http://repo.varnish-software.com (for service agreement customers)

• support@varnish-software.com (for existing customers, with SLA)

• sales@varnish-software.com

Section 10.2 Resources Page 149

http://varnish-cache.org
http://varnish-cache.org/docs/
http://repo.varnish-cache.org/
http://varnish-cache.org/wiki/VCLExamples
http://varnish-cache.org/wiki/MailingLists
http://planet.varnish-cache.org/
http://www.varnish-software.com
http://repo.varnish-software.com
mailto:support@varnish-software.com
mailto:sales@varnish-software.com

11 Appendix A: Varnish Programs
SHMLOG tools

• varnishlog

• varnishncsa

• varnishstat

• varnishhist

• varnishtop

• varnishsizes

Administration

• varnishadm

Misc

• varnishtest

• varnishreplay

Varnish provides several tools to help monitor and control Varnish. varnishadm, used to access the
management interface, is the only one that can affect a running instance of Varnish.

All the other tools operate exclusively on the shared memory log, often called shmlog in the context of
Varnish. They take similar (but not identical) command line arguments, and use the same underlying API.

Among the log-parsing tools, varnishstat is so far unique in that it only looks at counters. The counters are
easily found in the shmlog, and are typically polled at reasonable interval to give the impression of
real-time updates. Counters, unlike the rest of the log, are not directly mapped to a single request, but
represent how many times some specific action has occurred since Varnish started.

The rest of the tools work on the round robin part of the shmlog, which deals with specific requests. Since
the shmlog provides large amounts of information, it is usually necessary to filter it. But that does not just
mean "show me everything that matches X". The most basic log tool, varnishlog, will do precisely that.
The rest of the tools, however, can process the information further and display running statistical
information.

If varnishlog is used to dump data to disk, varnishreplay can simulate a similar load. varnishtest is used for
regression tests, mainly during development. Both are outside the scope of this course.

Note

There is a delay in the log process, though usually it is not noticeable. The shmlog is 80MB large
by default, which gives some potential history, but that is not guaranteed and it depends heavily on
when the last roll-around of the shmlog occurred.

Page 150 Section 11 Appendix A: Varnish Programs

11.1 varnishtop

varnishtop -i TxStatus

 list length 6 hostname

 3864.45 TxStatus 200
 1001.33 TxStatus 304
 33.93 TxStatus 301
 3.99 TxStatus 302
 3.00 TxStatus 404
 1.00 TxStatus 403

• Group tags and tag-content by frequency

varnishtop groups tags and the content of the tag together to generate a sorted list of the most frequently
appearing tag/tag-content pair.

Because the usefulness is only visible once you start filtering, it is often overlooked. The above example
lists status codes that Varnish returns.

Two of the perhaps most useful variants of varnishtop is:

• varnishtop -i TxUrl creates a list of URLs requested from a web server. Use this this find out
what is causing back-end traffic and start hitting items on the top of the list.

• varnishtop -i TxStatus lists what status codes Varnish returns to clients. (As shown above)

Some other possibly useful examples are:

• varnishtop -i RxUrl displays what URLs are most frequently requested from a client.

• varnishtop -i RxHeader -I 'User-Agent:.*Linux.*' lists User-Agent headers with
"Linux" in it (e.g: most used Linux web browsers, that report them self as Linux).

• varnishtop -i RxStatus will list status codes received from a web server.

• varnishtop -i VCL_call shows what VCL functions are used.

• varnishtop -i RxHeader -I Referrer shows the most common referrer addresses.

Section 11.1 varnishtop Page 151

11.2 varnishncsa

10.10.0.1 - - [24/Aug/2008:03:46:48 +0100] "GET \
http://www.example.com/images/foo.png HTTP/1.1" 200 5330 \
"http://www.example.com/" "Mozilla/5.0"

If you already have tools in place to analyze Apache-like logs (NCSA logs), varnishncsa can be used to
print the shmlog as ncsa-styled log.

Filtering works similar to varnishlog.

Page 152 Section 11.2 varnishncsa

11.3 varnishhist

 #
 #
 #
 #
 ##
 ###
 ###
 ###
 ###
 ###
 | ###
 | ###
 | | ###
 |||| ### #
 |||| #### #
 |##|##### # # # # #
+-------+-------+-------+-------+-------+-------+-------+-------+-------
|1e-6 |1e-5 |1e-4 |1e-3 |1e-2 |1e-1 |1e0 |1e1 |1e2

Section 11.3 varnishhist Page 153

11.4 Exercise: Try the tools

• Send a few requests to Varnish using GET -e http://localhost:8000

• verify you have some cached objects using varnishstat

• look at the communication with the clients, using varnishlog. Try sending various headers and see
them appear in varnishlog.

• Install siege

• Run siege against localhost while looking at varnishhist

Page 154 Section 11.4 Exercise: Try the tools

12 Appendix B: Extra Material
The following is content needed for some of the exercises.

Section 12 Appendix B: Extra Material Page 155

12.1 ajax.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/jquery/1.4/jquery.min.js">
 </script>
 <script type="text/javascript">
 function getNonMasqueraded()
 {
 $("#result").load("http://www.google.com/robots.txt");
 }

 function getMasqueraded()
 {
 $("#result").load("/masq/robots.txt");
 }
 </script>
 </head>
 <body>
 <h1>Cross-domain Ajax</h1>

 Test a non masqueraded cross-domain request
 Test a masqueraded cross-domain request

 <h1>Result</h1>
 <div id="result"></div>
 </body>
</html>

Page 156 Section 12.1 ajax.html

12.2 article.php

<?php
header("Cache-Control: public, must-revalidate, max-age=3600, s-maxage=3600");

$date = new DateTime();
$now = $date->format(DateTime::RFC2822);
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head></head>
 <body>
 <h1>This is an article, cached for 1 hour</h1>

 <h2>Now is <?php echo $now; ?></h2>
 <a href="<?=$_SERVER['PHP_SELF']?>">Refresh this page
 </body>
</html>

Section 12.2 article.php Page 157

12.3 cookies.php

<?php
header('Content-Type: text/plain');

print("The following cookies have been received by the server\n");

foreach($_COOKIE as $name => $value)
 print("- ${name} : ${value}\n");
?>

Page 158 Section 12.3 cookies.php

12.4 esi-top.php
<?php
header('Content-Type: text/html');
header('Cache-Control: max-age=30, s-maxage=3600');
$date = new DateTime();
$now = $date->format(DateTime::RFC2822);
$setc = "";
if(isset($_POST['k']) and $_POST['k'] !== '' and
 isset($_POST['v']) and $_POST['v'] !== '') {
 $k=$_POST['k'];
 $v=$_POST['v'];
 $setc = "Set-Cookie: $k=$v";

 header("$setc");
 ?><meta http-equiv="refresh" content="1" />
 <h1>Refreshing to set cookie <?php print $setc; ?></h1><?php
}
?>
<html><head><title>ESI top page</title></head><body><h1>ESI Test page</h1>
<p>This is content on the top-page of the ESI page. The top page is cached for 1 hour in Varnish, but only 30 seconds on the client.</p> <p>The time when the top-element was created:</p><h3>

<?php echo "$now"; ?>

<h1>Set a cookie:</h1><form action="/esi-top.php" method="POST">
Key: <input type="text" name="k">
Value: <input type="text" name="v">
<input type="submit"> </form>

</h3><p>The top page received the following Cookies:</p>

<?php

foreach($_COOKIE as $name => $value)
 print("${name} : ${value}\n");
?>

<table border="1"><tr><td><esi:include src="/esi-user.php" /></td></tr></table></body></html>

Section 12.4 esi-top.php Page 159

12.5 esi-user.php
<?php
header('Content-Type: text/html');
header('Cache-Control: max-age=30, s-maxage=20');
header('Vary: Cookie');
$date = new DateTime();
$now = $date->format(DateTime::RFC2822);
?>
<p>This is content on the user-specific ESI-include. This part of the page is can be cached in Varnish separately since it emits a "Vary: Cookie"-header. We can not affect the client-cache of this sub-page, since that is determined by the cache-control headers on the top-element.</p>
<p>The time when the user-specific-element was created:</p><h3>

<?php echo "$now"; ?>

</h3><p>The user-specific page received the following Cookies:</p>

<?php

foreach($_COOKIE as $name => $value)
 print("${name} : ${value}\n");
?>

Page 160 Section 12.5 esi-user.php

Section 12.5 esi-user.php Page 161

12.6 httpheadersexample.php

<?php
define('LAST_MODIFIED_STRING', 'Sat, 09 Sep 2000 22:00:00 GMT');

// expires_date : 10s after page generation
$expires_date = new DateTime();
$expires_date->add(new DateInterval('PT10S'));

$headers = array(
 'Date' => date('D, d M Y H:i:s', time()),
);

if(isset($_GET['h']) and $_GET['h'] !== '')
{
 switch($_GET['h'])
 {
 case "expires" :
 $headers['Expires'] = toUTCDate($expires_date);
 break;

 case "cache-control":
 $headers['Cache-Control'] = "public, must-revalidate, max-age=3600, s-maxage=3600";
 break;

 case "cache-control-override":
 $headers['Expires'] = toUTCDate($expires_date);
 $headers['Cache-Control'] = "public, must-revalidate, max-age=2, s-maxage=2";
 break;

 case "last-modified":
 $headers['Last-Modified'] = LAST_MODIFIED_STRING;
 $headers['Etag'] = md5(12345);

 if(isset($_SERVER['HTTP_IF_MODIFIED_SINCE']) and
 $_SERVER['HTTP_IF_MODIFIED_SINCE'] == LAST_MODIFIED_STRING) {
 header("HTTP/1.1 304 Not Modified");
 exit();
 }
 break;

 case "vary":
 $headers['Expires'] = toUTCDate($expires_date);
 $headers['Vary'] = 'User-Agent';
 break;
 }

 sendHeaders($headers);

}

function sendHeaders(array $headerList)
{
 foreach($headerList as $name => $value)
 {
 header("${name}: ${value}");

Page 162 Section 12.6 httpheadersexample.php

 }
}

function toUTCDate(DateTime $date)
{
 $date->setTimezone(new DateTimeZone('UTC'));
 return $date->format('D, d M Y H:i:s \G\M\T');
}
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head></head>
 <body>
 <h1>Headers sent</h1>
 <?php
 foreach($headers as $name => $value) {
 print "${name}: ${value}
";
 }

 if(isset($_SERVER['HTTP_IF_MODIFIED_SINCE'])) {
 print "If-Modified-Since has been sent in the";
 print "request, value : " . $_SERVER['HTTP_IF_MODIFIED_SINCE'];
 }
 ?>
 <hr/>
 <h1>Links for testing</h1>

 <a href="<?=$_SERVER['PHP_SELF']?>?h=expires">Test Expires response header
 <a href="<?=$_SERVER['PHP_SELF']?>?h=cache-control">Test Cache-Control response header
 <a href="<?=$_SERVER['PHP_SELF']?>?h=cache-control-override">Test Cache-Control response header overrides Expires
 <a href="<?=$_SERVER['PHP_SELF']?>?h=last-modified">Test Last-Modified/If-modified-since response header
 <a href="<?=$_SERVER['PHP_SELF']?>?h=vary">Test Vary response header

 </body>
</html>

Section 12.6 httpheadersexample.php Page 163

12.7 purgearticle.php

<?php
header('Content-Type: text/plain');
header('Cache-Control: max-age=0');
$hostname = 'localhost';
$port = 80;
$URL = '/article.php';
$debug = true;

print "Updating the article in the database ...\n";
purgeURL($hostname, $port, $URL, $debug);

function purgeURL($hostname, $port, $purgeURL, $debug)
{
 $finalURL = sprintf(
 "http://%s:%d%s", $hostname, $port, $purgeURL
);

 print("Purging ${finalURL}\n");

 $curlOptionList = array(
 CURLOPT_RETURNTRANSFER => true,
 CURLOPT_CUSTOMREQUEST => 'PURGE',
 CURLOPT_HEADER => true ,
 CURLOPT_NOBODY => true,
 CURLOPT_URL => $finalURL,
 CURLOPT_CONNECTTIMEOUT_MS => 2000
);

 $fd = false;
 if($debug == true) {
 print "\n---- Curl debug -----\n";
 $fd = fopen("php://output", 'w+');
 $curlOptionList[CURLOPT_VERBOSE] = true;
 $curlOptionList[CURLOPT_STDERR] = $fd;
 }

 $curlHandler = curl_init();
 curl_setopt_array($curlHandler, $curlOptionList);
 curl_exec($curlHandler);
 curl_close($curlHandler);
 if($fd !== false) {
 fclose($fd);
 }
}
?>

Page 164 Section 12.7 purgearticle.php

12.8 test.php

<?php
$cc = "";
if(isset($_GET['k']) and $_GET['k'] !== '' and
 isset($_GET['v']) and $_GET['v'] !== '') {
 $k=$_GET['k'];
 $v=$_GET['v'];
 $cc = "Cache-Control: $k=$v";

 header("$cc");

}
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head></head>
 <body>
 <h1>Cache-Control Header:</h1>
 <?php
 print "<pre>$cc</pre>\n";
 ?>
 <hr/>
 <h1>Links for testing</h1>
 <form action="/test.php" method="GET">
 Key: <input type="text" name="k">
 Value: <input type="text" name="v">
 <input type="submit">
 </form>
 </body>
</html>

Section 12.8 test.php Page 165

12.9 set-cookie.php

<?php
header("Cache-Control: max-age=0");
$cc = "";
if(isset($_POST['k']) and $_POST['k'] !== '' and
 isset($_POST['v']) and $_POST['v'] !== '') {
 $k=$_POST['k'];
 $v=$_POST['v'];
 $setc = "Set-Cookie: $k=$v";

 header("$setc");

}
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head></head>
 <body>
 <h1>Set-Cookie Header:</h1>
 <?php
 print "<pre>$setc</pre>\n";
 ?>
 <hr/>
 <h1>Links for testing</h1>
 <form action="/set-cookie.php" method="POST">
 Key: <input type="text" name="k">
 Value: <input type="text" name="v">
 <input type="submit">
 </form>
 </body>
</html>

Page 166 Section 12.9 set-cookie.php

	1 Introduction
	1.1 About the course
	1.2 Goals and Prerequisites
	1.3 Introduction to Varnish
	1.4 Design principles
	1.5 How objects are stored

	2 Getting started
	2.1 Configuration
	2.2 Command line configuration
	2.3 Configuration files
	2.4 Defining a backend in VCL
	2.5 Exercise: Installation
	2.6 Exercise: Fetch data through Varnish
	2.7 Log data
	2.8 varnishlog
	2.9 Varnishlog tag examples
	2.10 varnishlog options
	2.11 varnishstat
	2.12 The management interface
	2.13 Exercise: Try out the tools

	3 Tuning
	3.1 Process Architecture
	3.1.1 The management process
	3.1.2 The child process
	3.1.3 VCL compilation

	3.2 Storage backends
	3.3 The shared memory log
	3.4 Tunable parameters
	3.5 Threading model
	3.6 Threading parameters
	3.6.1 Details of threading parameters
	3.6.2 Number of threads
	3.6.3 Timing thread growth

	3.7 System parameters
	3.8 Timers
	3.9 Exercise: Tune first_byte_timeout
	3.10 Exercise: Configure threading

	4 HTTP
	4.1 Protocol basics
	4.2 Requests
	4.3 Request example
	4.4 Response
	4.5 Response example
	4.6 HTTP request/response control flow
	4.7 Statelesness and idempotence
	4.8 Cache related headers
	4.9 Exercise : Test various Cache headers
	4.10 Expires
	4.11 Cache-Control
	4.12 Last-Modified
	4.13 If-Modified-Since
	4.14 If-None-Match
	4.15 Etag
	4.16 Pragma
	4.17 Vary
	4.18 Age
	4.19 Header availability summary
	4.20 Cache-hit and misses
	4.21 Exercise: Use article.php to test Age

	5 VCL Basics
	5.1 The VCL State Engine
	5.2 Syntax
	5.3 VCL - request flow
	5.3.1 Detailed request flow

	5.4 VCL - functions
	5.5 VCL - vcl_recv
	5.6 Default: vcl_recv
	5.7 Example: Basic Device Detection
	5.8 Exercise: Rewrite URLs and Host headers
	5.9 Solution: Rewrite URLs and Host headers
	5.10 VCL - vcl_fetch
	5.11 Default: vcl_fetch
	5.12 The initial value of beresp.ttl
	5.13 Example: Enforce caching of .jpg urls for 60 seconds
	5.14 Example: Cache .jpg for 60 only if s-maxage isn't present
	5.15 Exercise: Avoid caching a page
	5.16 Solution: Avoid caching a page
	5.17 Exercise: Either use s-maxage or set ttl by file type
	5.18 Solution: Either use s-maxage or set ttl by file type
	5.19 Summary of VCL - Part 1

	6 VCL functions
	6.1 Variable availability in VCL
	6.2 VCL - vcl_hash
	6.3 VCL - vcl_hit
	6.4 VCL - vcl_miss
	6.5 VCl - vcl_pass
	6.6 VCL - vcl_deliver
	6.7 VCL - vcl_error
	6.8 Example: Redirecting users with vcl_error
	6.9 Exercise: Modify the error message and headers
	6.10 Solution: Modify the error message and headers

	7 Cache invalidation
	7.1 Naming confusion
	7.2 Removing a single object
	7.3 Example: purge;
	7.4 The lookup that always misses
	7.5 Banning
	7.6 VCL contexts when adding bans
	7.7 Smart bans
	7.8 ban() or purge;?
	7.9 Exercise: Write a VCL for bans and purges
	7.10 Solution: Write a VCL for bans and purges
	7.11 Exercise : PURGE an article from the backend
	7.12 Solution : PURGE an article from the backend

	8 Saving a request
	8.1 Core grace mechanisms
	8.2 req.grace and beresp.grace
	8.3 When can grace happen
	8.4 Exercise: Grace
	8.5 Health checks
	8.6 Health checks and grace
	8.7 Directors
	8.7.1 Client and hash directors
	8.7.2 The DNS director

	8.8 Demo: Health probes and grace
	8.9 Saint mode
	8.10 Restart in VCL
	8.11 Backend properties
	8.12 Example: Evil backend hack
	8.13 Access Control Lists
	8.14 Exercise: Combine PURGE and restart
	8.15 Solution: Combine PURGE and restart

	9 Content Composition
	9.1 A typical site
	9.2 Cookies
	9.3 Vary and Cookies
	9.4 Best practices for cookies
	9.5 Exercise: Compare Vary and hash_data
	9.6 Edge Side Includes
	9.7 Basic ESI usage
	9.8 Exercise: Enable ESI and Cookies
	9.9 Testing ESI without Varnish
	9.10 Masquerading AJAX requests
	9.11 Exercise : write a VCL that masquerades XHR calls
	9.12 Solution : write a VCL that masquerades XHR calls

	10 Finishing words
	10.1 Varnish 2.1 to 3.0
	10.2 Resources

	11 Appendix A: Varnish Programs
	11.1 varnishtop
	11.2 varnishncsa
	11.3 varnishhist
	11.4 Exercise: Try the tools

	12 Appendix B: Extra Material
	12.1 ajax.html
	12.2 article.php
	12.3 cookies.php
	12.4 esi-top.php
	12.5 esi-user.php
	12.6 httpheadersexample.php
	12.7 purgearticle.php
	12.8 test.php
	12.9 set-cookie.php

